Skip to main content
Log in

Using frequency of dividing cells in estimating autotrophic picoplankton growth and productivity in the Chesapeake Bay

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In situ incubations of natural autotrophic picoplankton populations during a 15 month study were used to test the frequency of dividing cells proceduresin estimating phototrophic picoplankton growth rates. These rates were estimated using dilution experiments and compared to the average frequency of dividing cells over the same time interval. The regression equation of µ = 2.85 × 10−3 (FDC) + 0.022 was calculated to relate autotrophic picoplankton growth rate and the frequency of dividing cells in this study. The resulting relationship was compared to 14C-bicarbonate derived growth rates. Productivity estimates using frequency of dividing cells correlated closely to sodium 14C-bicarbonate results and indicated a range of productivity by autotrophic picoplankton of 55.6% the total phytoplankton primary productivity in July to a January rate of 2.3%. Annual autotrophic picoplankton abundance varied seasonally in the lower Chesapeake Bay ranging from 7.26 × 106 cells 1−1 in winter to 9.28 × 108 cells 1−1 during late summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affronti, L. F., 1990. Seasonal and diel patterns of abundance and productivity of phototrophic picoplankton in the lower Chesapeake Bay. Doctoral Dissertation, Old Dominion University, Norfolk, Virginia, 141 pp.

    Google Scholar 

  • Affronti, L. F. & H. G. Marshall, 1990. Picoplankton dynamics in the lower Chesapeake Bay. Assoc. Southeastern Biol. Bull. 37: 69 (Abs.).

    Google Scholar 

  • Affronti, L. F. & H. G. Marshall, 1993. Diel abundance and productivity patterns of autotrophic picoplankton in the lower Chesapeake Bay. J. Plankton Res. 15: 1–8.

    Google Scholar 

  • Apstein, C., 1911. Studie über Ceratium tripos var. subsalsa Wiss. Meeresunters. N.F., Bd 12, S. 137–162.

    Google Scholar 

  • Campbell, L. & E. J. Carpenter, 1986. Diel patterns of cell division in marine Synechococcus spp. (Cyanobacteria): Use of the frequency of dividing cells technique to measure growth rate. Mar. Ecol. Prog. Ser. 32: 139–148.

    Google Scholar 

  • Christian, R. R., R. B. Hanson & S. Y. Newell, 1982. Comparison of methods for measurement of bacterial growth rates in mixed batch cultures. Appl. envir. Microbiol. 43: 1160–1165.

    Google Scholar 

  • Davis, P. G. & J. McN. Sieburth, 1984. Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation of frequency of dividing bacteria. Mar. Ecol. Prog. Ser. 19: 237–246.

    Google Scholar 

  • Fahnenstiel, G. L., T. R. Patton, H. J. Carrick & M. J. McCormick, 1991. Diel division cycle and growth rates of Synechococcus in Lakes Huron and Michigan. Int. Revue ges. Hydrobiol. 76: 657–664.

    Google Scholar 

  • Fuhram, J. A., J. W. Ammerman & F. Azam, 1980. Bacterioplankton in the coastal euphotic zone: distribution, activity, and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.

    Google Scholar 

  • Gieskes, W. W., G. W. Kraay & M. A. Baars, 1979. Current 14C methods for measuring primary production: gross under estimates in oceanic waters. Neth. J. Sea Res. 13: 58–78.

    Google Scholar 

  • Gonzalez, J. M., E. B. Sherr & B. F. Sherr, 1990. Size-selected grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. envir. Microbiol. 56: 583–589.

    Google Scholar 

  • Gough, L. H., 1905. Report on the plankton of the English Channel in 1903. Rept. (S. Area) Fishery Hydrogr. Invest. N. Sea 1: 325–327.

    Google Scholar 

  • Hagström A. J., J. W. Ammerman, S. Henrichs & F. Azam, 1984. Bacterioplankton growth in seawater: II. Organic matter utilization during steady-state growth in seawater cultures. Mar. Ecol. Prog. Ser. 18: 41–48.

    Google Scholar 

  • Hagström, A. J., U. Larsson, P. Horstedt & S. Normark, 1979. Frequency of dividing cells, a new approach to determination of bacterial growth rates in aquatic environments. Appl. envir. Microbiol. 37: 805–812.

    Google Scholar 

  • Hanson, R. B., D. Shafer, T. R. Ryan, D. H. Pope & H. K. Lowery, 1983. Bacterioplankton in Antarctic Ocean waters during late Austral winter: abundance, frequency of dividing cells, and estimates of production. Appl. envir. Microbiol. 45: 1622–1632.

    Google Scholar 

  • Johnson, P. W. & J. McN. Sieburth, 1979. Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototropic biomass. Limnol. Oceanogr. 24: 928–935.

    Google Scholar 

  • Johnson, P. W. & J. McN. Sieburth, 1982. In situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18: 318–327.

    Google Scholar 

  • Landry, M. R., L. W. Haas & V. L. Fagerness, 1984. Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16: 127–133.

    Google Scholar 

  • Li, W. K. W., D. V. Subba Roa, W. G. Harrison, J. C. Smith, J. J. Cullen, B. Irwin & T. Platt, 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292–295.

    Google Scholar 

  • Li, W. K. W. & P. M. Dickie, 1991. Relationship between the number of dividing and non-dividing cells of cyanobacteria in North Atlantic picoplankton. J. Phycol. 27: 559–565.

    Google Scholar 

  • Marshall, H. G., 1991. Preliminary results of phytoplankton composition, abundance and distribution in the lower Chesapeake Bay Monitoring Program. Sp. Rpt., Old Dominion University Research Foundation, Norfolk, Va, 61 pp.

    Google Scholar 

  • McDuff, R. E. & S. W. Chrisholm, 1982. The calculation of in situ growth rates of phytoplankton populations from fractions of cells undergoing mitosis: a clarification. Limnol. Oceanogr. 27: 783–788.

    Google Scholar 

  • National Oceanic and Atmospheric Administration, 1988. Local climatological data, monthly summary, Norfolk, Va, 4 pp.

  • National Oceanic and Atmospheric Administration, 1989. Local climatological data, monthly summary, Norfolk, Va, 4 pp.

  • Newell, S. Y. & R. R. Christian, 1981. Frequency of dividing cells as an estimator of bacterial productivity. Appl. envir. Microbiol. 42: 23–31.

    Google Scholar 

  • Perkins, F. O., L. W. Haas, D. E. Phillips & K. L. Webb, 1980. Ultrastructure of marine Synechococcus possessing spinae. Can. J. Microbiol. 27: 318–329.

    Google Scholar 

  • Pick, F. R. & C. Bérubé, 1992. Diel cycles in the frequency of dividing cells of freshwater picocyanobacteria. J. Plankton Res. 14: 1193–1198.

    Google Scholar 

  • Platt, T. S., S. Roa & B. Irwin, 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301: 702–704.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Ray, R. T., L. H. Haas & M. E. Sieracki, 1989. Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Mar. Ecol. Prog. Ser. 52: 273–285.

    Google Scholar 

  • Sieburth, J. McN., V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size. Limnol. Oceanogr. 23: 1256–1263.

    Google Scholar 

  • Sieracki, M. E., P. W. Johnson & J. McN. Sieburth, 1985. Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy. Appl. envir. Microbiol. 49: 799–810.

    Google Scholar 

  • Stanier, R. V., E. A. Adelberg, J. L. Ingraham & M. L. Wheelis, 1979. Introduction to the Microbial World. Prentice-Hall, Inc. Englewood Cliffs, N.J., 336 pp.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bull. 167, Fish. Res. Bd Canada. Ottawa, 310 pp.

  • Takahashi, M. & P. K. Bienfang, 1983. Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters. Mar. Biol. 76: 203–211.

    Google Scholar 

  • Takahashi, M. & T. Hori, 1984. Abundance of picoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters. Mar. Biol. 79: 177–186.

    Google Scholar 

  • Thomsen, H. A., 1986. A survey of the smallest eucaryotic organisms of the marine phytoplankton. In: T. Platt and W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 121–158.

  • Waterbury, J. B., S. W. Watson, R. R. L. Guillard & L. E. Brand, 1979. Wide-spread occurrence of a unicellular marine planktonic cyanobacterium. Nature 277: 293–294.

    Google Scholar 

  • Waterbury, J. B., S. W. Watson, F. W. Valois & D. G. Franks, 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: T. Platt and W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 71–120.

  • Weisse, T., 1988. Autotrophic picoplankton in Lake Constance. J. Plankton Res. 10: 1179–1188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Affronti, L.F., Marshall, H.G. Using frequency of dividing cells in estimating autotrophic picoplankton growth and productivity in the Chesapeake Bay. Hydrobiologia 284, 193–203 (1994). https://doi.org/10.1007/BF00006689

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006689

Key words

Navigation