Skip to main content
Log in

Biological relationships to convective flow patterns within stream beds

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Porewater flowlines in the bed of a small Michigan USA river were shown to be altered by Chara hummocks, sea lamprey nests, and beaver dams. Altered flow lines followed expected in-bed convective and underflow patterns predicted from published models. The greater density and shape of Chara hummocks caused upwellings into the hummocks, possibly being of benefit to the plants through contact with higher levels of dissolved substances contained in the cooler, deeper porewater. Streamwater downwelling into the more permeable sea lamprey nests may provide a continuous supply of well-oxygenated water, enhancing egg survival. Convective flow patterns beneath beaver dams, as well as beneath other bed surface features, may function to temporarily store dissolved streamwater substances, altering downstream transport rates, and may function to bring porewater/streamwater to the surface, affecting distributions of surface dwelling organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Applegate, V. C., 1950. Natural history of the sea lamprey, Petromyzon marinus, in Michigan. U.S. Fish Wildlife Serv. Spec. Sci. Rep. Fish 55: 1–237.

    Google Scholar 

  • Bencala, K. E., 1984. Interactions of solutes and streambed sediment 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport. Wat. Res. 20: 1804–1814.

    Google Scholar 

  • Cooper, A. C., 1965. The effect of transported stream sediments on the survival of sockeye and pink salmon eggs and alevins. Int. Pacific Salmon Fish. Comm. Bull. 18, 71 pp.

    Google Scholar 

  • Danielopol, D. L., 1980. The role of the limnologist in groundwater studies. Int. Revue ges. Hydrobiol. 65: 777–791.

    Google Scholar 

  • Davis, S. N., 1969. Porosity and permeability of natural materials. In R. J. M. De Wiest (ed.), Flow through porous media. Academic Press, New York, New York: 54–89.

    Google Scholar 

  • Fortner, S. L. & D. S. White, 1988. Groundwater seepage: a factor influencing the distributions of lotic aquatic vascular plants. Aquat. Bot. 31: 1–12.

    Google Scholar 

  • Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 604 pp.

    Google Scholar 

  • Godbout, L. & H. B. N. Hynes, 1982. The three-dimensional distribution of the fauna in a single riffle in a stream in Ontario. Hydrobiologia 97: 87–96.

    Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111: 219–228.

    Google Scholar 

  • Hendricks, S. P. & D. S. White, 1988. Hummocking by lotic Chara: observations on alterations of hyporheic temperature patterns. Aquat. Bot. 31: 13–22.

    Google Scholar 

  • Hynes, H. B. N., 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.

    Google Scholar 

  • Jaag, O. & H. Ambuhl, 1964. The effect of current on the composition of biocenoses in flowing water streams. In Int. Conf. Wat. Pollut. Res. Lond., Pergammon Press, Oxford, Endland, 31–49.

    Google Scholar 

  • Jackman, A. P., R. A. Walters & V. C. Kennedy, 1984. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A. 2. Mathematical modeling. J. Hydrol. 75: 111–141.

    Google Scholar 

  • Kennedy, V. C., A. P. Jackman, S. M. Zand, G. W. Zellweger, & R. J. Avanzino, 1984. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA. 1. Conceptual model. J. Hydrol. 75: 67–110.

    Google Scholar 

  • Lee, D. R. & J. A. Cherry, 1978. A field exercise on groundwater seepage meters and mini-piezometers. J. Geol. Ed. 27: 6–10.

    Google Scholar 

  • Littlefield, L. & C. Forsberg, 1965. Absorption and translocation of phosphorus-32 by Chara globularis Thuill. Physiol. Plant. 18: 219–296.

    Google Scholar 

  • Naiman, R. J., J. M. Melillo & J. E. Hobbie, 1986. Ecosystem alterations of boreal forest streams by beaver. Ecology 67: 1254–1269.

    Google Scholar 

  • Prescott, G. W., 1982. Algae of the western Great Lakes area. Otto Koeltz Sci. Publ., Koenigstein, W. Germany, 977 pp.

    Google Scholar 

  • Scott, W. B. & E. J. Crossman, 1973. Freshwater fishes of Canada. Fish. Res. Bd Can. Bull. 184, 966 pp.

    Google Scholar 

  • Shepherd, B. G., G. F. Hartman & W. J. Wilson, 1986. Relationships between stream and intragravel temperatures in coastal drainages, and some implications for fisheries workers. Can. J. Fish. aquat. Sci. 43: 1818–1822.

    Google Scholar 

  • Thackson, E. L. & K. B. Schnell, 1970. Predicting effects of dead zones on stream mixing. Proc. Am. soc. Chem. Eng. 96(SA2): 319–331.

    Google Scholar 

  • Thibodeaux, L. J. & J. D. Boyle, 1987. Bedform-generated convective transport in bottom sediment. Nature 325: 341–343.

    Google Scholar 

  • Tindall, D. R., 1962. Life history and ecology of Nitella flexilis (Characeae). Master's Thesis, Univ. Louisville, Louisville, Kentucky, 77 pp.

    Google Scholar 

  • Vaux, W. G., 1962. Interchange of stream and intergravel water in a salmon spawning riffle. U.S. Fish Wildl. Serv. Spec. Sci. Rept.-Fish. No. 405, 42 pp.

  • Vaux, W. G., 1968. Intergravel flow and interchange of water in a streambed. Fish. Bull. 66: 479–489.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Google Scholar 

  • Wallis, P. M., H. B. N. Hynes & S. A. Telang, 1981. The importance of groundwater in the transportation of allochthonous dissolved organic matter to the streams draining a small mountain stream. Hydrobiologia 79: 77–90.

    Google Scholar 

  • White, D. S, C. H. Elzinga & S. P. Hendricks, 1987. Temperature patterns within the hyporheic zone of a northern Michigan river. J. N. Am. Benthol. Soc. 6: 85–91.

    Google Scholar 

  • Wigley, R. L., 1959. Life history of the sea lamprey of Cayuga Lake, New York. U.S. Fish Wildlife Serv. Fish. Bull. 154: 561–617.

    Google Scholar 

  • Williams, D. D., 1984. The hyporheic zone as a habitat for aquatic insects and associated arthropods. In V. H. Resh & D. M. Rosenberg (ed.), The ecology of aquatic insects. Preager Publ., New York, New York: 430–455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D.S. Biological relationships to convective flow patterns within stream beds. Hydrobiologia 196, 149–158 (1990). https://doi.org/10.1007/BF00006106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006106

Key words

Navigation