Skip to main content
Log in

Impact of mild experimental acidification on short term invertebrate drift in a sensitive British Columbia stream

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We report daytime drift behavior of lotic macroinvertebrates following short term (12 h) additions of HCl or HCl plus AlCl3 to a circumneutral softwater (alkalinity ca. 100 µeq 1-1) mountain stream in British Columbia, Canada. Addition of HCl (pH reduced from 7.0 to 5.9) resulted in an overall tripling of invertebrate drift density with rapid (< 1 h) increases in chironomid Diptera and Trichoptera. Small Ephemeroptera also entered the drift at high densities, but were delayed about 6 h. Addition of AlCl3 (0.71 to 0.95 mg 1-1 total Al3+) in HCl (stream pH reduced to 5.9) resulted in an overall 6-fold increase in invertebrate drift, with rapid increases by Ephemeroptera and delayed responses by chironomids and Trichoptera. These results suggest that the behavior of several macroinvertebrates from low alkalinity, unacidified streams can be altered by simulations of short-term, mild acidic deposition events. Further, the magnitude and timing of entry into the drift varies among taxonomic groups with the presence or absence of low concentrations of aluminum ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard M. & G. Moreau, 1987. Effects of experimental acidification on a lotic macroinvertebrate community. Hydrobiologia 144: 37–49.

    Google Scholar 

  • APHA, 1984. Standard methods for the examination of water & wastewater. American Public Health Association, New York.

    Google Scholar 

  • Barnes, R. B., 1975. The determination of specific forms of aluminum in natural waters. Chem. Geol. 15: 177–191.

    Article  Google Scholar 

  • Bell, H. L., 1971. Effect of low pH on the survival and emergence of aquatic insects. Wat. Res. 5: 313–319.

    Article  Google Scholar 

  • Bell, H. L. & A. V. Nebeker, 1969. Preliminary studies on the tolerance of aquatic insects to low pH. J. Kansas Entomol. Soc. 42: 230–236.

    Google Scholar 

  • Bernard, D. P., 1985. Impact of stream acidification on invertebrates: drift responses to in situ experiments augmenting aluminum ion concentrations. M. Sc. Thesis. University of British Columbia.

  • Burton, T. M., R. M. Sanford & J. W. Allen, 1985. Acidification effects on stream biota and organic matter processing. Can. J. Fish. aquat. Sci. 42: 669–675.

    Google Scholar 

  • Dillon, P. J., N. D. Yan & H. H. Harvey, 1984. Acidic deposition: effects on aquatic ecosystems. CRC Crit. Rev. Envir. Control 13: 167.

    Google Scholar 

  • Drablos, D. & A. Tollan (eds.), 1980. Ecological impact of acid precipitation. SNSF, Oslo.

    Google Scholar 

  • Driscoll, C. T., J. P. Baker, J. J. Bisogni & C. L. Schofield, 1983. Aluminum speciation and equilibria in dilute acidic surface water of the Adirondack region of New York state. In: Bricker, O. P. (ed.). Geologic aspects of acid rain. Ann Arbor Science, Ann Arbor, pp. 55–75.

    Google Scholar 

  • Feller, M. & J. P. Kimmins, 1979. Chemical characteristics of small streams near Haney in southwestern British Columbia. Water Resource Res. 15: 247–258.

    Google Scholar 

  • Friberg, F., C. Otto & B. S. Svenson, 1980. Effects of acidification on the dynamics of allochthonous leaf material and benthic invertebrate communities in running waters. In: Drablos, D. & A. Tollan (eds.). Ecological impact of acid precipitation. SNSF, Oslo, pp. 304–305.

    Google Scholar 

  • Giberson, D. J. & R. J. Hall, 1988. Seasonal variation in faunal distribution within the sediments of a Canadian shield stream, with emphasis on responses to spring floods. Can. J. Fish. aquat. Sci. 45: 1994–2002.

    Google Scholar 

  • Haines, R. A., 1981. Acidic precipitation and its consequences for aquatic ecosystems: a review. Trans. Am. Fish. Soc. 110: 669–707.

    Article  Google Scholar 

  • Hall, R. J., C. T. Driscoll & G. E. Likens, 1987. Importance of hydrogen ions and aluminum regulating the structure and function of stream ecosystems: an experimental test. Freshwat. Biol. 18: 17–43.

    Google Scholar 

  • Hall, R. J., C. T. Driscoll, G. E. Likens & J. M. Pratt, 1985. Physical, chemical and biological consequences of episodic aluminum additions to a stream ecosystem. Limnol. Oceanogr. 30: 212–220.

    Google Scholar 

  • Hall, R. J. & F. P. Ide, 1987. Evidence of acidification effects on stream insect communities in central Ontario between 1937 & 1985. Can. J. Fish. aquat. Sci. 44: 1652–1657.

    Google Scholar 

  • Hall, R. J., G. E. Likens, S. B. Fiance & G. R. Hendry, 1980. Experimental acidification of a stream in the Hubbard Brook Experimental Forest, New Hampshire. Ecology 61: 976–989.

    Google Scholar 

  • Hall, R. J., J. M. Pratt & G. E. Likens, 1982. Effects of experimental acidification on macroinvertebrate drift density in a mountain stream. Wat. Air Soil Pollut. 18: 273–287.

    Google Scholar 

  • Hopkins, P. S., K. W. Kratz & S. D. Cooper, 1989. Effects of an experimental acid pulse on invertebrates in a high altitude Sierra Nevada stream. Hydrobiol. 171: 45–58.

    Google Scholar 

  • Klinka, K. & L. E. Lowe, 1975. Organic constituents of forest humus layers in the Coastal Western Hemlock biogeoclimatic zone of British Columbia in relation to forest ecosystems. 1. Proximate analysis. B.C. Forest Serv., Victoria. Res. Note 74. 16 pp.

  • Mackay, R. J. & K. Kersey, 1985. A preliminary study of aquatic insect communities in acid streams near Dorset, Ontario. Hydrobiologia 122: 3–11.

    Google Scholar 

  • McWilliams, P., D. Brown, G. Howells & W. Poole, 1980. Physiology of fish in acid waters. In: Drablos, D. & A. Tollan (eds.). Ecological impact of acid precipitation. SNSF, Oslo, pp. 282–283.

    Google Scholar 

  • Mundie, J. H., 1971. Sampling benthos and substrate materials down to 50 microns in size, in shallow streams. J. Fish. Res. Bd. Can. 28: 849–860.

    Google Scholar 

  • National Research Council of Canada, 1981. Acidification in the Canadian aquatic environment: scientific criteria for assessing the effects of acidic deposition in aquatic ecosystems. Environmental Secretariat, NRCC, Ottawa. Publ. No. 18475.

    Google Scholar 

  • Okland, J. & K. A. Okland, 1986. Effects of acid deposition on benthic animals in lakes and streams. Experimentia 42: 471–486.

    Google Scholar 

  • Ormerod, S. J., P. Boole, C. P. McCahon, N. S. Weatherley, D. Pascoe & R. W. Edwards, 1987. Short-term experimental acidification of a Welsh stream: comparing the biological effects of hydrogen ions and aluminum. Freshwat. Biol. 17: 341–356.

    Google Scholar 

  • Otto, C. & B. J. Svenson, 1983. Properties of acid brown water streams in south Sweden. Arch. Hydrobiol. 99: 15–36.

    Google Scholar 

  • Roddick, J. A., 1965. Vancouver, North Coquitlam and Pitt Lake map areas, British Columbia: with special emphasis on the evolution of the plutonic rocks. Geol. Survey Canada, Mem. 335. 276 pp.

  • Schindler, D. W., 1988. Effects of acid-rain on fresh-water ecosystems. Science 239: 149–157.

    Google Scholar 

  • Schindler D. W., K. H. Mills, D. F. Malley, D. L. Findlay, J. A. Shearer, I. J. Davis, M. A. Turner, G. A. Linsey & D. R. Cruikshank, 1985. Long-term ecosystem stress: the effect of years of experimental acidification on a small lake. Science 228: 1395–1401.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1970. Aquatic chemistry. Wiley Interscience, New York.

    Google Scholar 

  • Sullivan, M. A. & S. C. Samis, 1988. Assessment of acidification potential of selected Lower Mainland and Vancouver Island, British Columbia streams. Can. Tech. Rep. Fish. Aquat. Sci. No. 1599.

  • Swarts, F. A., W. A. Dunstan & J. E. Wright, 1978. Genetic and environmental factors involved in increased resistance of brook trout to sulfuric acid solutions and mild acid polluted waters. Trans. Am. Fish. Soc. 107: 651–677.

    Article  Google Scholar 

  • Valentine, K. W. G. & L. M. Lavkulich, 1978. The soil orders of British Columbia. In: Valentine, K. W. G., P. N. Sprout, T. E. Baker & L. M. Lavkulich (eds.). The soil landscape of British Columbia. B.C. Ministry Envir., Victoria, B.C., pp. 67–95.

    Google Scholar 

  • Waters, T. F., 1972. The drift of stream insects. Ann. Rev. Ent. 17: 253–272.

    Article  Google Scholar 

  • Welch, E. B., D. E. Spyridakis & T. Smayda, 1986. Temporal chemical variability in acid sensitive high elevation lakes. Wat. Air Soil Pollut. 31: 35–44.

    Google Scholar 

  • Zischke, J. A., F. W. Arthur, K. J. Nordie, R. O. Hermanutz, D. A. Standen & T. P. Henry, 1983. Acidification effects on macroinvertebrates and fathead minnows (Pimephales promelas) in outdoor experimental channels. Wat. Res. 17: 47–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, D.P., Neil, W.E. & Rowe, L. Impact of mild experimental acidification on short term invertebrate drift in a sensitive British Columbia stream. Hydrobiologia 203, 63–72 (1990). https://doi.org/10.1007/BF00005614

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005614

Key words

Navigation