Skip to main content
Log in

Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake

  • Full paper
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Because of the need for surface access for aquatic surface respiration (ASR), fish density increases were demonstrated for the open water of a floodplain lake during severe hypoxia. This indicates an O2-induced diurnal pattern of horizontal migrations between the zone of macrophyte cover and open water. Supplemental experimental investigations seem to suggest that species such as characoids,Colossoma macropomum andSchizodon fasciatum, deviate from this pattern. During long periods of oxygen depletion, they return to the region of macrophyte growth and survive there without displaying the usual kind of ASR. Mortality studies in net cages exposed in natural water bodies confirmed that only these two species are able to survive severe hypoxia beneath macrophyte cover. The possibility of an O2-input through the root system of plants is discussed. The O2-concentration has a significant influence on the locomotory behavior and the frequency of opercular movement in characoids. There is significantly less locomotory activity beneath the macrophytes during periods of oxygen depletion among those species not forced to migrate than among those in the open water regions, where normal ASR behavior is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Almeida de, R.G. 1980. Taxonomical aspects and feeding habitat of three species ofTriportheus (Pisces: Characoidei, Characidae) of the Castanho Lake, Amazon. M.Sc. Thesis, FUA/INPA, Manaus. 104 pp. (In Portuguese).

  • Armstrong, W. 1979. Aeration in higher plants. Adv. in Bot. Res. 7: 332–445.

    Google Scholar 

  • Bayley, P.B. 1982. Central Amazon fish populations: biomass, production and some dynamic characteristics. Ph.D. Thesis, Dalhousie University, Halifax. 308 pp.

  • Binder, A. 1986. Beobachtungen über das Verhalten zweier neotropischer Serrasalmiden (Colossoma macropomum undColossoma brachypomum) bei Hypoxie. Verh. Dtsch. Zool. Ges. 79: 309–310.

    Google Scholar 

  • Blaka, P. 1958. The anaerobic metabolism of fish. Physiol. Zool. 31: 117–128.

    Google Scholar 

  • Branson, B.A. & P. Hake. 1972. Observations on an accessory breathing mechanism inPiaractus nigripinnis (Cope) (Pisces: Teleostomi: Characidae). Zool. Anz. 189: 292–297.

    Google Scholar 

  • Braum, E. 1983. Beobachtungen über eine reversible Lippenextension und ihre Rolle bei der Notatmung vonBrycon spec. (Pisces, Characidae) undColossoma macropomum (Pisces, Serrasalmidae). Amazoniana 7: 355–374.

    Google Scholar 

  • Braum, E. & W.J. Junk. 1982. Morphological adaptation of two Amazonian Characoids (Pisces) for surviving in oxygen deficient waters. Int. Revue ges. Hydrobiol. 67: 869–886.

    Google Scholar 

  • Burggren, W.W. 1982. ‘Air gulping’ improves blood oxygen transport during aquatic hypoxia in the goldfishCarassius auratus. Physiol. Zool. 55: 327–334.

    Google Scholar 

  • Gee, J.H., R.F. Tallman & H.J. Smart. 1978. Reactions of some great plains fishes to progressive hypoxia. Can. J. Zool. 56: 1962–1966.

    Google Scholar 

  • Goulding, M. & M.L. Carvalho. 1982. Life history and management of the tambaqui (Colossoma macropomum, Characidae): an important Amazonian food fish. Revta. bras. Zool. 1: 107–133.

    Google Scholar 

  • Hochachka, P.W. 1982. Anaerobic metabolism: living without oxygen. pp. 138–150. In: C.R. Taylor, K. Johansen & L. Bolis (ed.) A Companion to Animal Physiology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Holeton, G.F. 1971. Respiratory and circulatory responses of rainbow trout larvae to carbon monoxide and to hypoxia. J. exp. Biol. 55: 683–694.

    Google Scholar 

  • Holeton, G.F. & D.J. Randall. 1967. The effect of hypoxia upon pressure of gases in the blood and water afferent and efferent to the gills of rainbow trout. J. exp. Biol. 46: 317–327.

    Google Scholar 

  • Hughes, G.M. & R.L. Saunders. 1970. Responses of the respiratory pumps to hypoxia in the rainbow trout (Salmo gairdneri). J. exp. Biol. 53: 529–545.

    Google Scholar 

  • Junk, W.J. 1970. Investigations on the ecology and production biology of the ‘floating meadows’ (Paspalo-Echinochloetum) on the Middle Amazon. Part I: The floating vegetation and its ecology. Amazoniana 2: 449–495.

    Google Scholar 

  • Junk, W.J. 1973. Investigations on the ecology and production biology of the ‘floating meadows’ (Paspalo-Echinochloetum) on the Middle Amazon. Part II: The aquatic fauna in the root zone of the floating vegetation. Amazoniana 4: 9–102.

    Google Scholar 

  • Junk, W.J. 1980. Inundated areas — a challenge for the limnology. Acta Amazonica 10: 775–795. (In Portuguese).

    Google Scholar 

  • Junk, W.J. 1983. Ecology of swamps on the Middle Amazon. pp. 269–294. In: Gore, A.J.P. (ed.) Ecosystems of the World, Mires: Swamps, Bog, Fen and Moor, B. Regional Studies, Elsevier, Amsterdam.

    Google Scholar 

  • Junk, W.J. 1984. Ecology, fisheries and fish culture in Amazonia, pp. 443–475. In: H. Sioli The Amazon. Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin, Dr W.J. Junk Publishers, Dordrecht.

    Google Scholar 

  • Junk, W.J., G.M. Soares & F.M. Carvalho. 1983. Distribution of fish species in a lake of the Amazon river floodplain near Manaus (Lago Camaleão), with special reference to extreme oxygen conditions. Amazoniana 7: 397–431.

    Google Scholar 

  • Klinger, S.A., J.J. Magnuson & G.W. Gallepp. 1982. Survival mechanisms of the central mudninnow (Umbra limi), fathead minnow (Pimephales promelas) and brook stickleback (Culaea inconstans) for low oxygen in winter. Env. Biol. Fish. 7: 113–120.

    Google Scholar 

  • Kramer, D.L. 1983. Aquatic surface respiration in the fishes of Panama: distribution in relation to risk of hypoxia. Env. Biol. Fish. 8: 49–54.

    Google Scholar 

  • Kramer, D.L., C.C. Lindsey, G.E.E. Moodie & E.D. Stevens. 1978. The fishes and the aquatic environment of the Central Amazon basin, with particular reference to respiratory patterns. Can. J. Zool. 56: 717–729.

    Google Scholar 

  • Kramer, D.L. & M. McClure. 1982. Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes. Env. Biol. Fish. 7: 47–55.

    Google Scholar 

  • Kramer, D.L. & J.P. Mehegan. 1981. Aquatic surface respiration, an adaptive response to hypoxia in the guppy,Poecilia reticulata (Pisces, Poeciliidae). Env. Biol. Fish. 6: 299–313.

    Google Scholar 

  • Lewis, Jr., W.M. 1970. Morphological adaptations of cyprinodontoids for inhabiting oxygen deficient waters. Copeia 1970: 319–326.

  • Marlier, G. 1965. Etude sur les lacs de l'Amazonie Centrale. Cadernos da Amazonia 5. 51 pp.

  • Mount, D.L. 1961. Development of a system for controlling dissolved oxygen content of water. Trans. Amer. Fish. Soc. 90: 323–327.

    Google Scholar 

  • Randall, E.J. & A.G. Shelton. 1963. The effect of changes in environmental gas concentration on the breathing and heart rate of a teleost fish. Comp. Biochem. Physiol. 9: 229–239.

    Google Scholar 

  • Sachs, L. 1978. Angewandte Statistik. Statistische Methoden und ihre Anwendungen. Springer, Berlin. 552 pp.

    Google Scholar 

  • Saint-Paul, U. 1982. Ökologische und physiologische Untersuchungen an dem Amazonasfisch TambaquiColossoma macropomum (Cuvier 1818) im Hinblick auf seine Eignung für die tropische Fischzucht (Pisces, Serrasalmidae). Ph.D. Thesis, University of Hamburg, Hamburg. 220 pp.

  • Saint-Paul, U. 1984. Physiological adaptation to hypoxia of a neotropical characoid fishColossoma macropomum, Serrasalmidae. Env. Biol. Fish. 11: 53–62.

    Google Scholar 

  • Saint-Paul, U. 1985. Anpassungsmechanismen eines neotropischen CharacoidenColossoma macropomum an Hypoxie. Verh. Dtsch. Zool. Ges. 78: 254.

    Google Scholar 

  • Santos, G.M. 1981. Nutrition and feeding habit ofSchizodon fasciatus Agassiz, 1829,Rhytiodus microlepis Kner, 1859 andRhytiodus argenteofuscus Kner, 1859 of the Janauacá Lake, Amazon. (Osteichthyes, Characoidei, Anostomidae). Acta Amazonica 11: 267–283. (In Portuguese).

    Google Scholar 

  • Santos, G.M. 1982. Characteristics, feeding habitat and reproduction of four ‘aracus’ species and ecological considerations about this group in the Janauacá Lake, Amazon (Osteichthyes, Characoidei, Anostomidae). Acta Anazonica 12: 713–739. (In Portuguese).

    Google Scholar 

  • Schmidt, G.W. 1973. Primary production of phytoplankton in the three types of Amazonian waters. II. The limnology of a tropical flood-plain lake in Central Amazonia (Lago do Castanho). Amazoniana 4: 139–204.

    Google Scholar 

  • Shoubridge, E.A. & P.W. Hochachka. 1981. The origin and significance of metabolic carbon dioxide production in the anoxic goldfish. Mol. Physiol. 1: 315–338.

    Google Scholar 

  • Sioli, H. 1968. Zur Ökologie des Amazonasgebietes. pp. 137–170. In: E.J. Fittkau et al. (ed.) Biography and Ecology in South America, Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Thursby, G.B. 1984. Root-exuded oxygen in the aquatic angiospermRuppia maritima. Mar. Ecol. Prog. Ser. 16: 303–305.

    Google Scholar 

  • Vanderhorst, R. & S.D. Lewis. 1969. Potential of sodium sulfite catalyzed with cobalt chloride in harvesting fish. Progr. Fish. Cult. 31: 149–154.

    Google Scholar 

  • Weber, J.-M. & D.L. Kramer. 1983. Effects of hypoxia and surface access on growth, mortality, and behavior of juvenile guppies,Poecilia reticulata. Can. J. Fish. Aquat. Sci. 40: 1583–1588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saint-Paul, U., Soares, G.M. Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake. Environ Biol Fish 20, 91–104 (1987). https://doi.org/10.1007/BF00005289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005289

Key words

Navigation