Skip to main content
Log in

Insulin stimulates hepatic lipogenesis in rainbow trout, Oncorhynchus mykiss

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effects of the pancreatic hormones, insulin and glucagon, on rates of lipid biosynthesis in liver removed from rainbow trout, Oncorhynchus mykiss, were evaluated in vitro. Livers were removed from animals fasted for 30–36h, cut into ca. 1 mm3 pieces, and incubated in the presence of various concentrations of salmon insulin (sINS), bovine insulin (bINS), or a combination of BINS and bovine/porcine glucagon (GLU). Lipid synthesis was evaluated by total lipid concentration, 3H2O incorporation into total lipid, and by fatty acid synthetase activity. Both mammalian and sINS tended to increase tissue total lipid concentration in hepatic tissue incubated for 5h. Insulin also stimulated 3H2O incorporation into total lipid in a dose-dependent manner. Bovine INS (2 × 10−6 M) stimulated de novo synthesis nearly 6-fold over control rates; sINS (2 × 10−6 M) stimulated label incorporation more than 7-fold over control rates. Glucagon inhibited INS-stimulated 3H2O incorporation; whereas, GLU alone had no effect on lipid synthesis in liver pieces incubated 5h. Lipid class analysis indicated that bINS significantly stimulated 3H2O incorporation into phospholipids, fatty acids, and triacylglycerols. The greatest accumulation of label was in the triacylglycerol fraction, where incorporation was stimulated 17-fold over control levels. Hepatic enzymatic analysis indicated that bINS also significantly stimulated lipogenic enzyme activity 9-fold above control levels. These results indicate that INS is an important regulator of lipid synthesis in the liver of trout.

Résumé

Les effecs des hormones pancréatiques, insuline et glucagon, sur le taux de biosynthèse des lipides dans le foie de truite arc-en-ciel (Oncorhynchus mykiss), ont été évalués in vitro. Les foies ont été prélevés sur des animaux mis à jeun depuis 30–36 heures, puis coupés en fragment d'un mm3 et incubés en présence de concentrations variables d'insuline de saumon (sINS), d'insuline bovine (BINS), ou d'une combinaison de BINS et de glucagon bovin/porcin (GLU). La synthèse lipidique est estiméee à partir de la concentration totale de lipides, par l'incorporation de 3H2O dans les lipides totaux, et par l'activité acides gras synthétase. Les insulines mammaliennes et de saumon ont tendance à augmenter la concentration totale de lipides du tissu hépa-tique incubé durant 5 heures. L'insuline stimule aussi l'incorporation de 3H2O dans les lipides totaux de manière dose-dépendante. La bINS (2 × 10−8 M) stimule près de six fois la synthèse de novo comparée à celle observée dans le contrôle, et la sINS (2 × 10−8 M) plus de 7 fois. Le glucagon inhibe la stimulation de l'incorporation de l'3H2O par l'insuline, alors que seul, il n'a aucun effet sur la synthèse lipidique des explants de foie incubés durant 5 heures. L'analyse des classes de lipides montre que la bINS stimule significativement l'incorporation de 3H2O dans les phospholipides, les acides gras et les triglyćerides. La plus grande accumulation a lieu dans la fraction des triglycérides, avec une stimulation augmentée de 17 fois. L'analyse des enzymes hépatiques indique que la bINS stimule 9 fois l'activité de l'enzyme lipogénique. Ces résultats montrent que l'insuline, est un important régulateur de la synthèse des lipides dans le foie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Allen, W.V. 1976. Biochemical aspects of lipid storage and utilization in animals. Am. Zool. 16: 631–647.

    CAS  Google Scholar 

  • Christiansen, D.C. and Klungsoyr, L. 1988. Metabolic utilization of nutrients and the effects of insulin in fish. Comp. Biochem. Physiol. 88B: 701–711.

    Google Scholar 

  • De Vlaming, V.L. and Pardo, R.L. 1975. In vitro effects of insulin on liver lipid and carbohydrate metabolism in the teleost, Notemigonus crysolencas. Comp. Biochem. Physiol. 51B: 489–497.

    Google Scholar 

  • Folch, J., Lees, M. and Sloan-Stanley, C.H. 1957. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509.

    PubMed  CAS  Google Scholar 

  • Harmon, J.S. and Sheridan, M.A. 1992. Effects of nutritional state, insulin and glucagon on lipid metabolism of rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 87: 214–221.

    Article  PubMed  CAS  Google Scholar 

  • Harmon, J.S., Michelsen, K.G. and Sheridan, M.A. 1991. Purification and characterization of hepatic triacylglycerol lipase isolated from rainbow trout, Oncorhynchus mykiss. Fish Physiol. Biochem. 9: 361–368.

    Article  CAS  Google Scholar 

  • Hazel, J.R. 1990. Adaptation to temperature: phospholipid synthesis in hepatocytes of rainbow trout. Am. J. Physiol. 258: R1495–R1501.

    PubMed  CAS  Google Scholar 

  • Ince, B.W. and Thorpe, A. 1975. Hormonal and metabolite effects on plasma free fatty acids in the Northern pike, Esox lucius L. Gen. Comp. Endocrinol. 27: 144–152.

    Article  PubMed  CAS  Google Scholar 

  • Ince, B.W. and Thorpe, A. 1976. The in vivo metabolism of 14C glucose and 14C glycine in insulin-treated Northern pike (Esox lucius L.). Gen. Comp. Endocrinol. 28: 481–486.

    Article  PubMed  CAS  Google Scholar 

  • Iritani, N., Ikeda, Y., Fukuda, H. and Katsurada, A. 1984. Comparative study of lipogenic enzymes in several vertebrates. Lipids 19: 825–835.

    Google Scholar 

  • Jungas, R. 1968. Fatty acid synthesis in adipose tissue incubated in tritiated water. Biochemistry (Wash.) 7: 3708–3717.

    CAS  Google Scholar 

  • Jungas, R. 1970. Effect of insulin on fatty synthesis from pyruvate, lactate, or endogenous sources in adipose tissue: Evidence for the hormonal regulation of pyruvate dehydrogenase. Endocrinology 86: 1368–1375.

    Article  PubMed  CAS  Google Scholar 

  • Lawander, K., Dave, G., Johansson-Sjobeck, M.-G., Larson, A. and Lindman, U. 1976. Metabolic effects of insulin in the European eel, Anguilla anguilla L. Gen. Comp. Endocrinol. 29: 455–467.

    Article  Google Scholar 

  • Lin, H., Romsos, D.R., Tack, P.I. and Leveille, G.A. 1977. Influence of diet on in vitro and in vivo rates of fatty acid synthesis in coho salmon [Oncorhynchus kisutch (Walbaum)]. J. Nutr. 107: 1677–1682.

    PubMed  CAS  Google Scholar 

  • Mabrouk, G.M., Helmy, I.M., Thampy, G.K. and Wakil, S.J. 1990. Acute hormonal control of acetyl-CoA carboxylase. J. Biol. Chem. 265: 6330–6338.

    PubMed  CAS  Google Scholar 

  • Plisetskaya, E.M., Swanson, P., Bernard, M.G. and Dickhoff, W.W. 1988. Insulin in coho salmon (Oncorhynchus kisutch) during the parr to smolt transformation. Aquaculture 72: 151–164.

    Article  CAS  Google Scholar 

  • Plisetskaya, E.M. 1980. Fatty acid levels in blood of cyclostomes and fish. Env. Biol. Fish. 5: 273–290.

    Article  CAS  Google Scholar 

  • Sheridan, M.A., Woo, N.Y.S. and Bern, H.A. 1985. Changes in the rates of glycogenesis, glycogenolysis, lipogenesis, and lipolysis in selected tissues of the coho salmon (Oncorhynchus kisutch) associated with parr-smolt transformation. J. Exp. Zool. 236: 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, M.A. 1989. Alterations in lipid metabolism accompanying smoltification and seawater adaptation of salmonid fish. Aquaculture 82: 191–203.

    Article  CAS  Google Scholar 

  • Sheridan, M.A. and Mommsen, T.P. 1991. Effects of nutritional state on in vivo lipid and carbohydrate metabolism of coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 81: 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Tashima, L. and Cahill, G.F., Jr. 1968. Effects of insulin in the toadfish, Opsanus tau. Gen. Comp. Endocrinol. 11: 262–271.

    Article  PubMed  CAS  Google Scholar 

  • Warman, A.W. III and Bottino, N.R. 1978. Lipogenic activity of catfish liver. Lack of response to dietary changes and insulin administration. Comp. Biochem. Physiol. 59B: 153–161.

    CAS  Google Scholar 

  • Witters, L.A., Tipper, J.P. and Bacon, G.W. 1983. Stimulation of site-specific phosphorylation of acetyl coenzyme A carboxylase by insulin and epinephrine. J. Biol. Chem. 258: 5643–5648.

    PubMed  CAS  Google Scholar 

  • Zammit, V.A. and Corstorphine, C.G. 1982. Inhibition of acetyl-CoA carboxylase activity in isolated rat adipocytes incubated with glucagon. Biochem. J. 208: 783–788.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowley, D.J., Sheridan, M.A. Insulin stimulates hepatic lipogenesis in rainbow trout, Oncorhynchus mykiss . Fish Physiol Biochem 11, 421–428 (1993). https://doi.org/10.1007/BF00004592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004592

Keywords

Navigation