Skip to main content
Log in

Myosin, parvalbumin and myofibril expression in barbel (Barbus barbus L.) lateral white muscle during development

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Histo- and immunohistochemical techniques have recently been used to study the fibre type and myosin expression in fish muscle during development. In the present work, embryonic, larval and adult myosin isozymes (heavy and light chains) and parvalbumin isotypes were analyzed, from fertization to the adult stage, by polyacrylamide gel electrophoresis of barbel (Barbus barbus L.) trunk muscle extracts. The examined myosins display the sequential transitions from embryonic to larval and adult forms characteristic of higher vertebrates. They are characterized by specific heavy chains but their light chains differ only by the LC1/LC3 stoichiometry with LC3 exceeding LC1 after 10 days. Sarcoplasmic parvalbumins show considerable and unforeseen developmental transitions in their isotype distribution: the PA II isotype first appears after hatching and becomes the predominant form until the length reaches about 6 cm. One month after hatching, the amount of PA II then decreases and the synthesis of PA III and IV further increases to reach the typical adult pattern at a size of 18 cm. These observations show that the distribution of parvalbumin isotypes reflects the stage of development. It suggests a specific role for each isotype in relation to muscle activity. Microscopy illustrates the progressive development of somites, muscles cells, and myofibrils, which accelerates at hatching when movements increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Cleveland, D.W., Fischer, S.G., Kirschner, M.W. and Laemmli, U.K. 1977. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252: 1102–1106.

    Google Scholar 

  • Dabrowska, R., Sosinski, J. and Drabikowski, W. 1977. Changes in the composition of the myofibrillar fraction during development of the rabbit. FEBS Lett. 79: 295–300.

    Google Scholar 

  • d'Albis, A., Janmot, C. and Bechet, J.-J. 1985. Myosin switches in skeletal muscle development of an urodelan amphibian, Pleurodeles waltlii. Comparison with a mammalian, Mus musculus. Biochem. Biophys. Res. Commun. 128: 94–100.

    Google Scholar 

  • d'Albis, A., Couteaux, R., Janmot, C. and Roulet, A. 1989. Specific programs of myosin expression in the postnatal development of rat muscles. Eur. J. Biochem. 183: 583–590.

    Google Scholar 

  • Danieli Betto, D., Zerbato, E. and Betto, R. 1986. Type 1, 2A, and 2B myosin heavy chain electrophoretic analysis of rat muscle fibers. Biochem. Biophys. Res. Commun. 138: 981–987.

    Google Scholar 

  • Focant, B., Huriaux, F. and Johnston, I.A. 1976. Subunit composition of fish myofibrils: the light chains of myosin. Int. J. Biochem. 7: 129–133.

    Google Scholar 

  • Focant, B., Jacob, M.-F. and Huriaux, F. 1981. Electrophoretic comparison of the proteins of some perch (Perca fluviatilis L.) head muscles. J. Musc. Res. Cell Motil. 2: 295–305.

    Google Scholar 

  • Gerday, Ch. 1988. Soluble calcium binding proteins in vertebrate and invertebrate muscles. In Calcium and Calcium Binding Proteins. pp 23–39. Edited by Ch. Gerday, R. Gilles and L. Bolis. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Gillis, J.-M. and Gerday, Ch. 1977. Calcium movements between myofibrils, parvalbumins and sarcoplasmic reticulum in muscle. In Calcium Binding Proteins and Calcium Function. pp 193–196. Edited by R.H. Wasserman, R.A. Corradino, E. Carafoli and R.H. Kretsinger. Elsevier, North-Holland, Amsterdam.

    Google Scholar 

  • Hamoir, G., Gerardin-Otthiers, N. and Focant, B. 1980. Protein differentiation of the superfast swimbladder muscle of the toadfish Opsanus tau. J. Mol. Biol. 143: 155–160.

    Google Scholar 

  • Hoh, J.F.Y. 1979. Developmental changes in chicken skeletal myosin isoenzymes. FEBS Lett. 98: 267–270.

    Google Scholar 

  • Hoh, J.F.Y. and Yeoh, G.P.S. 1979. Rabbit skeletal myosin isoenzymes from fetal, fast-twitch and slow-twitch muscles. Nature, Lond. 280: 321–323.

    Google Scholar 

  • Huriaux, F. and Focant, B. 1977. Isolation and characterization of the three light chains from carp white muscle myosin. Arch. Int. Physiol. Biochim. 85: 917–929.

    Google Scholar 

  • Huriaux, F. and Focant, B. 1985. Electrophoretic and immunological study of myosin light chains from freshwater teleost fishes. Comp. Biochem. Physiol. 82B: 737–743.

    Google Scholar 

  • Huriaux, F., Lefebvre, F. and Focant, B. 1983. Myosin polymorphism in muscles of the toadfish, Opsanus tau. J. Musc. Res. Cell Motil. 4: 223–232.

    Google Scholar 

  • Huriaux, F., Vandewalle, P., Philippart, J.-C. and Focant, B. 1990. Electrophoretic comparison of myosin light chains and parvalbumins of trunk and head muscles from two barbel (Barbus barbus) populations. Comp. Biochem. Physiol. 97B: 547–553.

    Google Scholar 

  • Johnston, I.A., Davison, W. and Goldspink, G. 1977. Energy metabolism of carp swimming muscles. J. Comp. Physiol. 114: 203–216.

    Google Scholar 

  • Josse, M., Remacle, C. and Dupont, E. 1986. Aspects du développement de la musculature de la truite arc-en-ciel (Salmo gairdneri Richardson) en fonction de la dynamique de I'eau. Annals. Soc. R. Zool. Belg. 116: 191–210.

    Google Scholar 

  • Karasinski, J. and Kilarski, W. 1989. Polymorphism of myosin isoenzymes and myosin heavy chains in histochemically typed skeletal muscles of the roach (Rutilus rutilus L., Cyprinidae, Fish). Comp. Biochem. Physiol. 92B: 727–731.

    Google Scholar 

  • Krupka, I. 1988. Early development of the barbel (Barbus barbus (Linnaeus, 1758)). Prace Ust. Rybar. Hydrobiol. (Bratislava) 6: 115–138.

    Google Scholar 

  • Kullberg, R.W., Lentz, T.L. and Cohen, M.W. 1977. Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study. Dev. Biol. 60: 101–129.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, Lond. 227: 680–685.

    Google Scholar 

  • Leberer, E. and Pette, D. 1986. Neural regulation of parvalbumin expression in mammalian skeletal muscle. Biochem. J. 235: 67–73.

    Google Scholar 

  • Le Peuch, C.J., Ferraz, C., Walsh, M.P., Demaille, J.G. and Fischer, E.H. 1979. Calcium and cyclic nucleotide dependent regulatory mechanisms during development of chick embryo skeletal muscle. Biochemistry 18: 5267–5273.

    Google Scholar 

  • Lowey, S., Benfield, P.A., Leblanc, D.D. and Waller, G.S. 1983. Myosin isozymes in avian skeletal muscles. I. Sequential expression of myosin isozymes in developing chicken pectoralis muscles. J. Musc. Res. Cell Motil. 4: 695–716.

    Google Scholar 

  • Marechal, G., Schwartz, K., Beckers-Bleukx, G. and Ghins, E. 1984. Isozymes of myosin in growing and regenerating rat muscles. Eur. J. Biochem. 138: 421–428.

    Google Scholar 

  • Martinez, I., Olsen, R.L., Ofstad, R., Janmot, C. and d'Albis, A. 1989. Myosin isoforms in mackerel (Scomber scombrus) red and white muscles. FEBS Lett. 252: 69–72.

    Google Scholar 

  • Martinez, I., Ofstad, R. and Olsen, R.L. 1990a. Electrophoretic study of myosin isoforms in white muscles of some teleost fishes. Comp. Biochem. Physiol. 96B: 221–227.

    Google Scholar 

  • Martinez, I., Ofstad, R. and Olsen, R.L. 1990b. Intraspecific myosin light chain polymorphism in the white muscle of herring (Clupea harengus harengus, L. ). FEBS Lett. 265: 23–26.

    Google Scholar 

  • Martinez, I., Christiansen, J.S., Ofstad, R. and Olsen, R.L. 1991. Comparison of myosin isoenzymes present in skeletal and cardiac muscles of the Arctic charr Salvelinus alpinus (L.). Eur. J. Biochem. 195: 743–753.

    Google Scholar 

  • Ochiai, Y., Watabe, S. and Hashimoto, K. 1988. Physicochemical and immunological properties of myosin light chains from the ordinary muscle of marine teleost fishes. Comp. Biochem. Physiol. 90B: 347–353.

    Google Scholar 

  • Perrie, W.T. and Perry, S.V. 1970. An electrophoretic study of the low-molecular-weight components of myosin. Biochem. J. 119: 31–38.

    Google Scholar 

  • Philippart, J.-C. 1982. Mise au point de l'alevinage controlé du barbeau (Barbus barbus L.) en Belgique. Perspectives pour le rempoissonnement des rivières. Can. Ethol. appl. 2: 173–202.

    Google Scholar 

  • Phillippart, J.-C., Melard, Ch. and Poncin, P. 1989. Intensive culture of the barbel, Barbus barbus (L), for restocking. In Aquaculture: Biotechnology in Progress. pp 481–491. Edited by N. De Pauw, E. Jaspers, H. Ackefors and N. Wilkins. European Aquaculture Society, Bredene.

    Google Scholar 

  • Piront, A. and Gosselin-Rey, C. 1974. Immunological cross-reactions among Cyprinidae parvalbumins. Biochem. System. Ecol. 2: 103–107.

    Google Scholar 

  • Rowlerson, A., Scapolo, P.A., Mascarello, F., Carpene, E. and Veggetti, A. 1985. Comparative study of myosins present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle. J. Musc. Res. Cell Motil. 6: 601–640.

    Google Scholar 

  • Roy, R.K., Sreter, F.A. and Sarkar, S. 1979. Changes in tropomyosin subunits and myosin light chains during development of chicken and rabbit striated muscles. Dev. Biol. 69: 15–30.

    Google Scholar 

  • Scapolo, P.A. and Rowlerson, A. 1987. Pink lateral muscle in the carp (Cyprinus carpio L.): histochemical properties and myosin composition. Experientia. 43: 384–386.

    Google Scholar 

  • Scapolo, P.A., Veggetti, A., Mascarello, F. and Romanello, M.G. 1988. Developmental transitions of myosin isoforms and organisation of the lateral muscle in the teleost Dicentrarchus tabrax (L.). Anat. Embryol. 178: 287–295.

    Google Scholar 

  • Schwartz, L.M. and Kay, B.K. 1988. Differential expression of the Ca2+-binding protein parvalbumin during myogenesis in Xenopus laevis. Dev. Biol. 128: 441–452.

    Google Scholar 

  • Syrovy, I. 1979. Changes in light chains of myosin during animal development. Int. J. Biochem. 10: 223–227.

    Google Scholar 

  • Van Raamsdonk, W., Van Der Stelt, A., Diegenbach, P.C., Van De Berg, W., De Bruyn, H., Van Dijk, J. and Mijzen, P. 1974. Differentiation of the musculature of the teleost Brachydanio rerio. I. Myotome shape and movements in the embryo. Z. Anat. Entwickl. Gesch. 145: 321–342.

    Google Scholar 

  • Van Raamsdonk, W., Pool, C.W. and Te Kronnie, G. 1978. Differentiation of muscle fiber types in the teleost Brachydanio rerio. Anat. Embryol. 153: 137–155.

    Google Scholar 

  • Van Raamsdonk, W., Van't Veer, L., Veeken, K., Heyting, C. and Pool, C.W. 1982. Differentiation of muscle fiber types in the teleost Brachydanio rerio, the zebrafish: post-hatching development. Anat. Embryol. 164: 51–62.

    Google Scholar 

  • Whalen, R.G., Sell, S.M., Butler-Browne, G.S., Schwartz, K., Bouveret, P. and Pinset-Harstrom, I. 1981. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature, Lond. 292: 805–809.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Focant, B., Huriaux, F., Vandewalle, P. et al. Myosin, parvalbumin and myofibril expression in barbel (Barbus barbus L.) lateral white muscle during development. Fish Physiol Biochem 10, 133–143 (1992). https://doi.org/10.1007/BF00004524

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004524

Keywords

Navigation