Skip to main content
Log in

Influence of exercise on the distribution of enzymes in trout white muscle and kinetic properties of AMP-deaminase from free and bound fractions

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Effects of exercise on the distribution of phosphofructokinase (PFK), fructose-1,6-biphosphatase (FBPase), and AMP-deaminase between free and particulate-bound fractions was analyzed in white skeletal muscle of rainbow trout Oncorhynchus mykiss. With a widely used technique for the separation of free and bound enzyme fractions (homogenization in low ionic strength, high sucrose buffer), the data showed that the amount of bound PFK increased from 64 to 95% during burst swimming whereas other enzymes were unaffected. Since this data for AMP-deaminase contrasted with earlier reports, different methods of separating free and bound enzyme were evaluated. A clear effect of exercise on AMP-deaminase binding occurred when high ionic strength media (either KCl or KF) were used; in extraction media containing 150 mM KCl, the percent bound rose from 30% in controls to 97% after 1 min burst swimming. Exercise also produced stable changes to AMP-deaminase kinetic properties, including for the bound enzyme (compared with the free) a 2-fold higher Km AMP, a 3-fold higher Ki for inorganic phosphate, and a 60% increase in Ka ADP after 1 min burst exercise. The data suggest that AMP-deaminase in working skeletal muscle is subject to combined controls by allosteric effectors, post-translational modification, and distribution between free and bound states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, S.P.J. 1992. A simple computer program with statistical tests for the analysis of enzyme kinetics. BioTechniques 13: 906–911.

    PubMed  CAS  Google Scholar 

  • Brooks, S.P.J. and Storey, K.B. 1988a. Subcellular enzyme binding in glycolytic control: in vivo studies with fish muscle. Am. J. Physiol. 255: R289–R294.

    PubMed  CAS  Google Scholar 

  • Brooks, S.P.J. and Storey, K.B. 1988b. Reevaluation of the “glycolytic complex” in muscle: a multitechnique approach using trout white muscle. Arch. Biochem. Biophys. 267: 13–22.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, S.P.J. and Storey, K.B. 1991a. Where is the glycolytic complex? A critical evaluation of present data from muscle tissue. FEBS Lett. 278: 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, S.P.J. and Storey, K.B. 1991b. A quantitative evaluation of the effect of enzyme complexes on the glycolytic rate in vivo: mathematical modeling of the glycolytic complex. J. Theor. Biol. 149: 361–375.

    PubMed  CAS  Google Scholar 

  • Brooks, S.P.J. and Storey, K.B. 1993. Control of metabolic rate by multienzyme complexes: is glycolysis in hypoxia and anoxia regulated by complex formation? In Surviving Hypoxia: Mechanisms of Control and Adaptation. pp. 281–293. Edited by P.W. Hochachka, P.L. Lutz, T.J. Sick M. Rosenthal and G. van den Thillart. CRC Press, Boca Raton.

    Google Scholar 

  • Clarke, F.M., Shaw, F.D. and Morton, D.J. 1980. Effect of electrical stimulation post-mortem of bovine muscle on the binding of glycolytic enzymes. Biochem. J. 186: 105–109.

    PubMed  CAS  Google Scholar 

  • Clarke, F.M., Stephan, P., Huxham, G., Hamilton, D. and Morton, D.J. 1984. Metabolic dependence of glycolytic enzyme binding in rat and sheep heart. Eur. J. Biochem. 138: 643–649.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, J.A. and Storey, K.B. 1991. Role of enzyme binding in muscle metabolism of the goldfish. Can. J. Zool. 69: 1571–1576.

    Article  CAS  Google Scholar 

  • Duncan, J.A. and Storey, K.B. 1992. Subcellular enzyme binding and the regulation of glycolysis in anoxic turtle brain. Am. J. Physiol. 262: R517–R523.

    PubMed  CAS  Google Scholar 

  • Ferguson, R.A. and Storey, K.B. 1992. Gluconeogenesis in trout (Oncorhynchus mykiss) white muscle: purification and characterization of fructose- 1,6-bisphosphatase activity in vitro. Fish Physiol. Biochem. 10: 201–212, 1992.

    Article  CAS  Google Scholar 

  • Hultin, H.O. 1975 Effect of environment on kinetic characteristics of chicken lactate dehydrogenase isozymes. In Isozymes II, Physiology and Function, pp. 69–85. Edited by C.L. Markert. Academic Press, New York.

    Google Scholar 

  • Johnston, I.A. 1981. Structure and function of fish muscle. Symp. Zool. Soc. London, 48: 71–113.

    CAS  Google Scholar 

  • Kaletha, K., Thebault, M. and Raffin, J.-P. 1991. Comparative studies on heart and skeletal muscle AMP-deaminase from rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 99 B: 751–754.

    Article  CAS  Google Scholar 

  • Kurganov, B.I. 1986. The role of multienzyme complexes in integration of cellular metabolism. J. Theor. Biol. 119: 445–455.

    PubMed  CAS  Google Scholar 

  • Lushchak, V.I. 1992a. Free and membrane-bound lactate dehydrogenase from white driving muscles of skate. Biochem. Int. 26: 905–912.

    CAS  Google Scholar 

  • Lushchak, V.I. 1992b. Interaction of lactate dehydrogenase with cellular structures: possible physiological implications. Biokhimiya (Russia) 57: 1142–1154.

    CAS  Google Scholar 

  • Luther, M.A. and Lee, J.C. 1986. The role of phosphorylation in the interaction of rabbit muscle phosphofructokinase with F-actin. J. Biol. Chem. 261: 1753–1759.

    PubMed  CAS  Google Scholar 

  • Mommsen, T.P. and Hochachka, P.W. 1988. The purine nucleotide cycle as two temporally separated metabolic units: a study on trout muscle. Metabolism 37: 552–556.

    Article  PubMed  CAS  Google Scholar 

  • Parkhouse, W.S., Dobson, G.P. and Hochachka, P.W. 1988. Control of glycogenolysis in rainbow trout muscle during exercise. Can. J. Zool. 66: 345–351.

    Article  CAS  Google Scholar 

  • Parkhouse, W.S., Dobson, G.P., Belcastro, A.N. and Hochachka, P.W. 1987. The role of intermediary metabolism in the maintenance of proton and charge balance during exercise. Mol. Cell. Biochem. 77: 37–47.

    Article  PubMed  CAS  Google Scholar 

  • Rahim, Z.H.A., Lutaya, G. and Griffiths, J.R. 1979. Activation of AMP aminohydrolase during skeletal-muscle contraction. Biochem. J. 184: 173–176.

    PubMed  CAS  Google Scholar 

  • Roberts, S.J., Lowery, M.S. and Somero, G.N. 1988. Regulation of binding of phosphofructokinase to myofibrils in the red and white muscle of the barred sand bass Paralabrax nebulifer (Serranidae). J. Exp. Biol. 137: 13–27.

    PubMed  CAS  Google Scholar 

  • Rundell, K.W., Tullson, P.C. and Terjung, R.L. 1993. AMP-deaminase binding in rat skeletal muscle after high-intensity running. J. Appl. Physiol. 74: 2004–2006.

    Article  PubMed  CAS  Google Scholar 

  • Schulte, P.M., Moyes, C.D. and Hochachka, P.W. 1992. Integrating metabolic pathways in post-exercise recovery of white muscle. J. Exp. Biol. 166: 181–195.

    PubMed  CAS  Google Scholar 

  • Shiraki, H., Miyamoto, S., Matsuda, Y., Momose, E. and Nakagawa, H. 1981. Possible correlation between binding of muscle type AMP-deaminase to myofibrils and ammoniagenesis in rat skeletal muscle on electrical stimulation. Biochem. Biophys. Res. Commun. 100: 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  • Shiraki, H., Ogawa, H., Matsuda, Y. and Nakagawa, H. 1979a. Interaction of rat muscle AMP-deaminase with myosin. I. Biochemical study of the interaction of AMP-deaminase and myosin in rat muscle. Biochim. Biophys. Acta. 566: 335–344.

    PubMed  CAS  Google Scholar 

  • Shiraki, H., Ogawa, H., Matsuda, Y. and Nakagawa, H. 1979b. Interaction of rat muscle AMP-deaminase with myosin. II. Modification of the kinetic and regulatory properties of rat muscle AMP-deaminase by myosin. Biochim. Biophys. Acta. 566: 345–352.

    PubMed  CAS  Google Scholar 

  • Smiley, K.L., Berry, A.J. and Suelter, C.H. 1967. An improved purification, crystallization and some properties of rabbit muscle 5′-adenylic acid deaminase. J. Biol. Chem. 242: 2502–2506.

    PubMed  CAS  Google Scholar 

  • Storey, K.B. 1991. Metabolic consequences of exercise in organs of rainbow trout. J. Exp. Zool. 260: 157–164.

    Article  CAS  Google Scholar 

  • Su, Y. and Storey, K.B. 1992. Phosphofructokinase from white muscle of the rainbow trout, Oncorhynchus mykiss: purification and properties. Biochim. Biophys. Acta. 1160: 3001–3008.

    Google Scholar 

  • Thakkar, J.K., Janero, D.R., Yarwood, C. and Sharif, H.M. 1993. Modulation of mammalian cardiac AMP-deaminase by protein kinase C-mediated phosphorylation. Biochem. J. 291: 523–527.

    PubMed  CAS  Google Scholar 

  • Thillart, G. van den, Waarde, A. van, Muller H.J., Erkelens, C., Addink, A. and Lugtenburg, J. 1989. Fish muscle energy metabolism measured by in vivo 31P-NMR during anoxia and recovery. Am. J. Physiol. 256: R922–R929.

    PubMed  Google Scholar 

  • Tovmasian, E.K., Hairapetian, R.L., Bykova, E.V., Severin, S.E. and Haroutunian, A.V. 1990. Phosphorylation of the skeletal muscle AMP-deaminase by protein kinase C. FEBS Lett. 259: 321–323.

    Article  PubMed  CAS  Google Scholar 

  • Waarde, A. van and Kesbeke, F. 1981. Regulatory properties of AMP-deaminase from lateral red muscle and dorsal white muscle of goldfish, Carassius auratus (L.). Comp. Biochem. Physiol. 69 B: 413–423.

    Article  Google Scholar 

  • Wokoma, A. and Johnston, I.A. 1983. Anaerobic metabolism during activity in rainbow trout (Salmo gairdneri). Experientia 39: 1366–1367.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lushchak, V.I., Storey, K.B. Influence of exercise on the distribution of enzymes in trout white muscle and kinetic properties of AMP-deaminase from free and bound fractions. Fish Physiol Biochem 13, 407–418 (1994). https://doi.org/10.1007/BF00003420

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00003420

Keywords

Navigation