Skip to main content
Log in

Allozymic variation of the endangered killifishAphanius iberus and its application to conservation

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Genetic differentiation and patterns of variability in the endangered Iberian endemic,Aphanius iberus, were analyzed by allozyme electrophoresis as a valuable database for conservation purposes. Genetic variability values expressed as heterozygosity (H = 0.015–0.097) were close to the values found in other members of Cyprinodontidae (H = 0.012–0.123). Polymorphism values (P = 0.125–0.542) were higher than reported in the literature (P = 0.036–0.150) for Cyprinodontidae. Significant correlation existed between salinity values and genetic variability expressed as heterozygosity (r = − 0.76, p < 0.01) and polymorphism (r = − 0.60, p = 0.04). Low genetic variability values (H = 0.024–0.055, P = 0.125–0.292) were exhibited by populations which inhabit salty lagoons. The highest values were found in populations occurring in marshes and irrigation channels (H = 0.051–0.097, P = 0.250–0.542). Associations among genetic, geographic and ecological parameters were tested using a Mantel test indicated that most of the genetic distances were explained by geographic distances but not by ecological factors, suggesting that isolation by distance could be the main factor explaining the differentiation between sites. According to the genetic distances obtained, two mainA. iberus groups were discernible: the Atlantic and Mediterranean. Genetic distances between both groups (DRogers = 0.179–0.261) were higher than values between recognized species of other cyprinodontids (DRogers = 0.11–0.27). On the basis of genetic distances we have dated the fragmentation of both populations to the Upper Miocene-Pliocene when most of the Mediterranean sea dried up. Subsequently, gene flow between Mediterranean and Atlantic populations was interrupted. The results of our genetic analyses suggested the existence of five operational conservation units (OCUs) forA. iberus. These units are defined as a continuous area limited by geographical boundaries, and inhabited by one or more populations sharing the same genetic pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Alves, M.J. & M.J. Coelho, 1994. Genetic variation and population subdivision of the endangered Iberian cyprinidChondrostoma lusitanicum. J. Fish Biol. 44: 627–638.

    Google Scholar 

  • Avise, J.C., 1989. A role for molecular genetics in the recognition and conservation of endangered species. TREE 4: 79–281.

    Google Scholar 

  • Avise, J.C., 1992. Molecular populations structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63: 62–76.

    Google Scholar 

  • Avise, J.C. & M.H. Smith, 1977. Gene frequency comparisons between sunfish (Centrarchidae) populations at various stages of evolutionary divergence. Syst. Zool. 26: 319–335.

    Google Scholar 

  • Barrowclough, G.F, 1983. Biochemical studies of microevolutionary processes. pp. 233–261.In: A.H. Brush & G.A. Clark (ed.) Perspectives in Ornithology. Cambridge University Press, New York.

    Google Scholar 

  • Barton, N.H., 1989. Founder effect speciation. pp. 229–256.In: D. Otte & J.A. Endler (ed.) Speciation and its Consequences. Sinauer Associates, Sunderland.

    Google Scholar 

  • Blanco. J.C. & J.L. González (ed.), 1992. Libro rojo de los vertebrados de España. ICONA, Colección Técnica, Madrid. 714 pp.

    Google Scholar 

  • Coelho, M.M., 1992. Genetic differentiation of the Iberian cyprinidsChondrostoma polylepis Steind., 1865 andCh. willkommii Steind., 1866. Arch. Hydrobiol. 125: 487–498.

    Google Scholar 

  • Crother, B.I., 1992. Genetic characters, species concepts, and conservation biology. Conserv. Biol. 6: 314.

    Google Scholar 

  • Demestre, M., A. Roig, A. Sostoa & F. Sostoa, 1977. Contribucío a l'estudi de la ictiofauna continental del Delta de l'Ebre Treballs de la Institució Catalana d'Història Natural 8: 145–226.

    Google Scholar 

  • Doadrio, I., 1988. Delimitation of areas in the Iberian Peninsula on the basis of freshwater fishes. Bonn. zool. Beitr. 39: 113–128.

    Google Scholar 

  • Doadrio, I., 1994. Freshwater fish fauna of North Africa and its biogeography. Ann. Mus. r. Afr. Centr., Zool. 275: 21–34.

    Google Scholar 

  • Echelle, A.A., A.F. Echelle & D.R. Edds, 1987. Population structure of four pupfish species (Cyprinodontidae:Cyprinodon) from the Chihuahuan desert region of New Mexico and Texas: allozymic variation. Copeia 1987: 668–681.

  • Fernández-Delgado, C., J.A. Hernando, M. Herrera & M. Bellido, 1988. Age, growth and reproduction ofAphanius iberus (Cuv. & Val., 1846) in the lower reaches of the Guadalquivir River (south-west Spain). Freshwater Biol. 20: 227–234.

    Google Scholar 

  • García-Berthou, E. & R. Moreno-Amich, 1991. New records ofAphanius iberus (Pisces: Cyprinodontidae) and review of the geographical distribution of cyprinodontiform fishes in Catalonia (NE-Spain). SCIENTIA gerundensis 17: 69–76.

    Google Scholar 

  • García-Marín, J.L., A. Vila & C. Plá, 1990. Genetic variation in the Iberian toothcarpAphanius iberus (Cuvier & Valenciennes). J. Fish Biol. 37 (Suppl. A): 1–2.

    Google Scholar 

  • Gaudant, J., 1993. Un exemple de ‘Régression évolutive’ chez des poissons Cyprinodontidae du Miocène supérieur d'Espagne:Aphanius illunensis nov. sp. Geobios 26: 449–454.

    Google Scholar 

  • Gorman, G.C. & J. Renzi Jr., 1979. Genetic distance and heterozygosity studies: effects of sample size. Copeia 1979: 242–249.

  • Kapuscinski, A.R. & E.M. Hallerman, 1991. Implications of introduction of transgenic fish into natural ecosystems. Can. J. Fish. Aquat. Sci. 48 (Suppl.1): 99–107.

    Google Scholar 

  • Kornfield, I.L. & E. Nevo, 1976. Likely pre-Suez occurrence of a Red Sea fishAphanius dispar in the Mediterranean. Nature 264: 289–291.

    Google Scholar 

  • Leberg, P.L., 1992. Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46: 477–494.

    Google Scholar 

  • Levene, H., 1949. On a matching problem arising in genetics. Ann. Math. Stat. 20: 91–94.

    Google Scholar 

  • López Martínez, N., 1989. Tendencias en paleobiogeografía. El futuro de la biogeografía del pasado. pp. 271–296.In: E. Aguirre (ed.) Paleontología, CSIC, Madrid.

    Google Scholar 

  • Lougheed, S.C. & P. Hanford, 1993. Covariation of morphological and allozyme frequency characters in populations of the rufous-collared sparrow (Zonotrichia capensis). Auk 110: 179–188.

    Google Scholar 

  • Lozano Cabo, F., 1958. Contribución al conocimiento del ‘fartet’ (Aphanius iberus C. y V). Rev. R. Ac. Cienc. Exac., Fis. y Nat. 52: 585–607.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Amer. Nat. 106: 283–292.

    Google Scholar 

  • Nevo, E., 1978. Genetic variation in natural populations: patterns and theory. Theor. Popul. Biol. 13: 121–177.

    Google Scholar 

  • Nevo, E. & A. Beiles, 1991. Genetic diversity and ecological heterogeneity in amphibian evolution. Copeia 1991: 565–592.

  • Oosterbroeck, P. & J.W. Arntzen, 1992. Area-cladograms of circum-Mediterranean taxa in relation to Mediterranean palaeogeography. J. Biogeogr. 19: 3–20.

    Google Scholar 

  • Parenti, L.R., 1981. A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bull. Amer. Mus. nat. Hist. 168: 335–557.

    Google Scholar 

  • Pasteur, N., G. Pasteur, F. Bonhomme, J. Catalan & J. Britton-Davidian, 1987. Manuel technique de génétique par électrophorése des protéines. Collection Technique et Documentation, Lavoisier, Paris. 217 pp.

    Google Scholar 

  • Pellegrin, J.,1921. Les poissions des eaux douces de l'Afrique du Nord française, Maroc, Algérie, Tunisie, Sahara. Mémoires de la Société des Sciences Naturelles du Maroc, vol. 1 (2), Rabat, Paris. 216 pp.

  • Perdices, A., A. Machordom & I. Doadrio,1995. Allozyme variation of African and Iberian populations of the genusCobitis L.,1758 (Osteichthyes, Cobitidae). J. Fish Biol. (in press).

  • Pomerol, C.,1973. Stratigraphie et paléogéographie. Ere Cénozoïque (Tertiaire et Quaternaire). Doin, editors, Paris. 269 pp.

  • Rohlf, F.J., 1993. NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 1.80. Setauket, New York.

    Google Scholar 

  • Rogers, J.S., 1972. Measures of genetic similarity and genetic distance. Studies in Genetics, Univ. Texas Publ. 7213: 145–153.

    Google Scholar 

  • Rögl, F. & F.F. Steininger, 1983. Vom Zerfall des Tethys zu Mediterran und Paratethys. Die Neogene Paläeogeographie und Palinspastik des zirkum-mediterraneu Raumes. Ann. naturh. Mus. Wien 85 (A): 135–163.

    Google Scholar 

  • SAS Institute, 1985. SAS, Statistical analysis system, version 6. SAS Institute, Cary.

    Google Scholar 

  • Simberlof, D., 1988. The contribution of population and community biology to conservation science. Ann. Rev. Ecol. Syst. 19: 473–511.

    Google Scholar 

  • Sokal, R.R., P.E. Smouse & V.J. Neel, 1986. The genetic structure of a tribal population, the Yanomama indians. XV Patterns inferred by autocorrelation analysis. Genetics 114: 259–287.

    Google Scholar 

  • Sostoa, F.J., 1984. Biología deAphanius iberus (Cuv. et Val., 1846) en el Delta del Ebro. Ph.D. Thesis, University of Barcelona, Barcelona. 223 pp.

  • Steininger, F.F. & F. Rögl, 1984. Palaeogeography and palinspatic reconstruction of the Neogene of the Mediterranean and Paratethys. pp. 659–668.In: J.E. Dixon & A.H.F. Robertson (ed.) The Geological Evolution of the Eastern Mediterranean. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Swofford, D.L. & G.J. Olsen, 1990. Phylogeny reconstruction. pp. 411–500.In: D.M. Hillis & C. Moritz (ed.) Molecular Systematics. Sinauer Associates, Sunderland.

    Google Scholar 

  • Swofford, D.L. & R.B. Selander, 1981. BIOSYS-1: A FORTRAM program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283.

    Google Scholar 

  • Van Valen, L., 1965. Morphological variation and width of ecological niche. Amer. Nat. 99: 377–390.

    Google Scholar 

  • Vargas, M.J., 1993. Interacción entreAphanius iberus yGambusia holbrooki en el Delta del Ebro: sus ciclos biológicos y ecologías tróficas. Ph.D. Thesis, Universidad de Barcelona, Barcelona. 312 pp.

  • Villwock, W., 1982.Aphanius (Nardo, 1827) andCyprinodon (Lac.,1803) (Pisces: Cyprinodontidae), an attempt for a genetic interpretation of speciation. Z. zool. Syst. Evolut.-forsch. 20: 187–197.

    Google Scholar 

  • Villwock, W. & A. Scholl, 1982. Ergänzende Mitteilungen überAphanius aus der Oase Azraq/Jordanien Bowie Betrachtungen zum taxonomischen Status eines neuenA. iberus (Cyprinodontidae: Pisces) aus dem Oued Zousfana, Igli/Nordwest-Algerien. Mitt. Hamb. Zool. Mus. Inst. 79: 267–271.

    Google Scholar 

  • Workman, P.L. & J.D. Niswander, 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Amer. J. Hum. Genet. 22: 24–49.

    Google Scholar 

  • Wright, S., 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395–420.

    Google Scholar 

  • Zimmerman, E.G., R.L. Merrit & M.C. Wooten, 1980. Genetic variation and biology of stoneroller minnows. Biochem. Syst. Ecol. 8: 447–453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doadrio, I., Perdices, A. & Machordom, A. Allozymic variation of the endangered killifishAphanius iberus and its application to conservation. Environ Biol Fish 45, 259–271 (1996). https://doi.org/10.1007/BF00003094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00003094

Key words

Navigation