Skip to main content
Log in

Microbially — related redox changes in a subtropical lake I.In situ monitoring of the annual redox cycle

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Using a recently developedin situ multiprobe the redox development in the water column of warm-monomictic Lake Kinneret was investigated during three annual cycles. During the time when sulfide release into the meta- and hypolimnion is initiated, our measurements show a linear relationship, close to the thermodynamic function, between the platinum electrode potential and the amount of sulfide produced by the sulfate reducing bacteria. A change of this relationship during summer stratification coincides with the bloom of the phototrophic sulfur bacteriumChlorobium phaeobacteroides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baas-Becking LG (1925) Studies on the sulfur bacteria. Annals of Botany 39: 613–650

    Google Scholar 

  • Baas-Becking LG, Kaplan IR & Moore D (1960) Limits of the natural environment in terms of pH and oxidation-reduction potential. Journal of Geology 68: 243–284

    Article  Google Scholar 

  • Bergstein-BenDan T, Henis Y & Cavari BZ (1979) Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Canadian Journal of Microbiology 25: 999–1007

    Google Scholar 

  • Berman T & Pollingher U (1974) Annual and seasonal variations of phytoplankton, chlorophyll and photosynthesis in Lake Kinneret. Limnology and Oceanography 19: 31–54

    Google Scholar 

  • Berner RA (1963) Electrode studies of hydrogen sulfide in marine sediments. Geochemica and Cosmochemica Acta 27: 563–575

    Article  Google Scholar 

  • Bockris JOM & Huq AKMS (1956) The mechanism of the electrolytic evolution of oxygen on platinum. Proceedings of the Royal Society London 237A: 277–296

    Article  Google Scholar 

  • Boulègue J & Michard G (1979) Sulfur speciations and redox processes in reducing environments. In: Jenne EA (Ed) Chemical Modelling in Aqueous Systems. ACS Symposium Series 93: 25–50

  • Broderius SJ & Smith LL (1977) Direct determination and calculation of aqueous hydrogen sulfide. Analytical Chemistry 49: 424–428

    Article  Google Scholar 

  • Eckert W & Frevert T (1984) In situ monitoring of hydrogen sulfide in water and sediment of Lake Kinneret/Israel. 4th Symposium on Ion-Selective Electrodes, Matrafured, Hungary: 359–371

  • Eckert W, Frevert T & Trüper HG (1990a) A new liquid-junction free probe for the in situ determination of pH,pH2S and redox values. Water Research 24: 1341–1346

    Article  Google Scholar 

  • Eckert W, Yacobi Y & Trüper HG (1990b) A bloom of a brown phototrophic sulfur bacterium in Lake Kinneret: hydrochemical aspects. Microbial Ecology 20: 273–282

    Google Scholar 

  • Eckert W & Trüper HG (1993) Microbially-related redox changes in a subtropical lake. 2. The simulation of metalimnetic conditions in a chemostat. Biogeochemistry 21: 21–38

    Article  Google Scholar 

  • Frevert T & Galster H (1978) Schnelle und einfache Methode zur in situ Bestimmung von Schwefelwasserstoff in Gewässern und Sedimenten. Swiss Journal of Hydrology 40: 199–208

    Google Scholar 

  • Frevert T (1979) The pe redox concept in natural sediment-water systems: its role in controlling phosphorous release from lake sediments. Archives of Hydrobiology, Supplement 55: 278–297

    Google Scholar 

  • Frevert T (1983) Hydrochemisches Grundpraktikum. UTB, Birkhäuser Verlag, Basel

    Google Scholar 

  • Frevert T (1984) Can the redox conditions in natural water systems be predicted by a single parameter? Swiss Journal of Hydrology 46: 269–290

    Google Scholar 

  • Gillespie LJ (1920) Reduction potentials of bacterial cultures and of waterlogged soils. Soil Science 9: 199–216

    Article  Google Scholar 

  • Harrison DEF (1973) Growth, oxygen and respiration. C.R.C. Critical Reviews in Microbiology 2: 185–228

    Google Scholar 

  • Hostettler JD (1984) Electrode electrons, aqueous electrons and redox potentials in natural waters. American Journal of Science 284: 734–759

    Article  Google Scholar 

  • Jacob HE (1971) Das Redoxpotential in Bakterienkulturen. Zeitschrift der Allgemeinen Mikrobiologie 11: 691–734

    Google Scholar 

  • Jacob HE (1974) Reasons for the redox potential microbial cultures. Biotechnology and Bioengineering. Symposium No. 4: 781–788

  • Kjaergaard L (1977) The redox-potential: its use in biotechnology. Advances in Biochemical Engineering 7: 131–155

    Article  Google Scholar 

  • Ohle W (1951) Der labile Zustand ostholsteinischer Seen. Fischwirtschaft 12: 1–8, cited from Wetzel (1981)

    Google Scholar 

  • Peiffer S & Frevert T (1987) A potentiometric method for detecting trace concentrations of sulfide sulfur in aqueous solutions. Analyst 112: 951–954

    Article  Google Scholar 

  • Pfennig, N (1975) The phototrophic bacteria and their role in the sulfur cycle. Plant Soil 23: 1–16

    Article  Google Scholar 

  • Schuldiner S, Piersma BJ & Warner TB (1966) Potential of a platinum electrode at low partial pressure of hydrogen and oxygen. II. An improved gastight system with a negligible oxygen leak. Journal of the Electrochemical Society 113: 573–577

    Google Scholar 

  • Serruya C (1972) Metalimnetic layer in Lake Kinneret, Israel. Hydrobiologia 40: 355–359

    Article  Google Scholar 

  • Serruya C78) Lake Kinneret Junk Amsterdam

    Google Scholar 

  • Shapiro J (1960) The cause of a metalimnic minimum of dissolved oxygen. Limnology and Oceanography 5: 216–227

    Google Scholar 

  • Sillen LG (1967) The ocean as a chemical system. Science 156: 1189–1197

    Article  Google Scholar 

  • Sorokin YI (1970) Interrelations between sulfur and carbon turnover in meromictic lakes. Archives of Hydrobiology 66: 391–446

    Google Scholar 

  • Stumm W (1966) Redox potential as an environmental parameter: Conceptual significance and operational limitations. Proc. Intern. Water Poll. Res. Conf. 3rd. Munich 1: 283–308

    Google Scholar 

  • Stumm W (1978) What is the pɛ of the sea? Thalassia Yugoslavica 14: 197–208

    Google Scholar 

  • Stumm W (1984) Interpretation and measurement of redox intensity in natural waters. Swiss Journal of Hydrology 46: 291–296

    Google Scholar 

  • Stumm W & Morgan JJ (1981) Aquatic Chemistry, 2nd edit., Wiley, New York

    Google Scholar 

  • Wetzel RG (1983) Limnology, Saunders, New York

    Google Scholar 

  • Whitfield M (1969) Eh as an operational parameter in estuarine studies. Limnology and Oceanography 14: 547–558

    Article  Google Scholar 

  • Whitfield M (1974) Thermodynamic limitations on the use of the Pt-electrode in Eh measurements. Limnology and Oceanography 19: 857–865

    Google Scholar 

  • Wimpenny JWT (1984) Redoxinteractions in mixed cultures. Biochemical Society Transactions 12: 1138–1140

    Google Scholar 

  • Wimpenny JWT & Necklen DK (1971) The redox environment and microbial physiology. 1. The transition from anaerobiosis to aerobiosis in continuous cultures of facultative anaerobes. Biochimica and Biophysica Acta 253: 352–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, W., Trüper, H.G. Microbially — related redox changes in a subtropical lake I.In situ monitoring of the annual redox cycle. Biogeochemistry 21, 1–19 (1993). https://doi.org/10.1007/BF00002685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002685

Key words

Navigation