Skip to main content
Log in

Quantitative scanning electron microscopy of solitary chemoreceptor cells in cyprinids and other teleosts

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Solitary chemosensory cells (SCC) occur in the epidermis of many lower, aquatic vertebrates. By scanning electron microscopy, SCC apices were counted and density distributions estimated along various transects at the head and body of 12 species of teleost fishes, 7 cyprinids, 2 perciforms, 2 catfish and 1 characinid. In contrast to taste buds (TB), the distribution of SCCs is relatively even, with slightly higher densities at the forehead and along the dorsal trunk. In most species 1000 to 1500 SCC apices per mm2 of skin were counted. Considerably higher densities occur in halos around free neuromasts. Depending on fish size and apex density, the epidermis of individuals may contain millions of SCCs. SCCs are considerably more abundant in individual fish than TB sensory cells. Highest average SCC densities (2000–4000 per mm2) were found in the cyprinids, roach, nase, chub and bream. Lowest densities (250 per mm2) occurred in the neon tetra. No correlations could be found between SCC densities and TB densities or relative size of the brain stem facial lobe, supporting the view of different functions and biological roles of the SCC and the TB systems. Whether teleost SCCs generally respond to mucoid substances, as in the case of the rocklings, remains an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Baatrup, E. & K.B. Doving. 1985. Physiological studies on solitary receptors of the oral disc papillae in the adult brook lamprey,Lampetra planeri (Bloch). Chem. Sens. 10: 559–566.

    Google Scholar 

  • Bardach, J.E. & J. Atema. 1971. The sense of taste in fishes. pp. 293–236. In: L.M. Beidler (ed.) Handbook of Sensory Physiology 4, Springer-Verlag, Berlin.

    Google Scholar 

  • Bardach, J.E. & J. Case. 1965. Sensory capabilities of the modified fins of squirrel hake (Urophycis chuss) and searobins (Prionotus carolinus andP. evolans). Copeia. 1965: 194–206.

  • Berri, R., R. Vezzosi & A. Ercolini. 1989. Locomotory response ofPhreatichthys andruzzi Vinciguerra (Pisces, Cyprinidae) to chemical signals of conspecifics and closely related species. Experientia 45: 205–207.

    Article  Google Scholar 

  • Brandstätter, R. & K. Kotrschal. 1990. Brain growth patterns from juveniles to adults in four mid-European cyprinid fishes (Cyprinidae, Teleostei), roach (Rutilus rutilus), bream (Abramis brama), carp (Cyprinus carpio) and sabre-carp (Pelecus cultratus). Brain, Behav. Evolut. 35: 195–211.

    Google Scholar 

  • Caprio, J. 1988. Peripheral filters and chemoreceptor cells in fishes. pp. 313–338. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer-Verlag, New York.

    Google Scholar 

  • Finger, T.E. 1982. Somatotopy of the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin,Prionotus carolinus. Biol. Bull. 163: 154–161.

    Google Scholar 

  • Finger, T.E. 1989. Sensorimotor mapping and oropharyngeal reflexes in goldfish. Chemorec. Abstr. 17: 6.

    Google Scholar 

  • Frisch, von K. 1941. Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z. vgl. Physiol. 29: 46–145.

    Article  Google Scholar 

  • Gomahr, A., M. Palzenberger & K. Kotrschal. 1992. Density distribution of external taste buds in cyprinids. Env. Biol. Fish. 33: 125–134.

    Google Scholar 

  • Herrick, C.J. 1904. The organs and sense of taste in fishes. U.S. Fish. Comm. Bull. 22: 239–272.

    Google Scholar 

  • Herrick, C.J. 1906. On the centers for taste and touch in the medulla oblongata of fishes. J. Comp. Neurol. Psychol. 16: 403–439.

    Article  Google Scholar 

  • Jakubowski, M. & M. Whitear. 1986. Ultrastructure of taste buds in fishes. Folia Histochem. Cytobiol. 24: 310–311.

    Google Scholar 

  • Jakubowski, M. & M. Whitear. 1990. Comparative morphology and cytology of taste buds in teleosts. Z. mikrosk.-anat. Forsch. 104: 529–560.

    Google Scholar 

  • Kinnamon, J.C. 1987. Organization and innervation of taste buds. pp. 277–298 In: T.E. Finger & W.L. Silver (ed.) Neurobiology of Taste and Smell, J. Wiley, New York.

    Google Scholar 

  • Kiyohara, S., S. Yamashita & J. Kitoh. 1980. Distribution of taste buds on the lips and inside the mouth in the minnow,Pseudorasbora parva. Physiol. Behav. 24: 1143–1147.

    Article  PubMed  Google Scholar 

  • Kiyohara, S., I. Hidaka, J. Kitoh & S. Yamashita. 1985. Mechanical sensitivity of the facial nerve fibers innervating the anterior palate of the puffer,Fugu pardalis, and their central projection to the primary taste center. J. Comp. Physiol. A 157: 705–716.

    Article  PubMed  Google Scholar 

  • Kotrschal, K. & H. Junger. 1988. Patterns of brain morphology in mid-European Cyprinidae (Pisces, Teleostei): a quantitative histological study. J. Hirnforsch. 29: 341–352.

    PubMed  Google Scholar 

  • Kotrschal, K. & M. Whitear. 1988. Chemosensory anterior dorsal fin in rocklings (Gaidropsarus andCiliata, Teleostei, Gadidae): somatotopic representation of the ramus recurrens facialis as revealed by transganglionic transport of HRP. J. Comp. Neurol. 268: 109–120.

    Article  PubMed  Google Scholar 

  • Kotrschal, K., M. Whitear & H. Adam. 1984. Morphology and histology of the anterior dorsal fin ofGaidropsarus mediterraneus (Pisces, Teleostei), a specialized sensory organ. Zoomorphol. 104: 365–372.

    Article  Google Scholar 

  • Kotrschal, K., J. Atema & R. Peters. 1989. A novel chemosensory system in fish: do rocklings (Ciliata mustela, Gadidae) use their solitary chemoreceptor cells as fish detectors? Biol. Bull. 177: 328.

    Google Scholar 

  • Lane, E.B. & M. Whitear. 1982. Sensory structures on the surface of fish skin. I. Putative chemoreceptors. Zool. J. Linn. Soc. 74: 141–141.

    Google Scholar 

  • Marui, T. & J. Caprio. 1982. Electrophysiological evidence for the topographical arrangement of taste and tactile neurons in the facial lobe of the channel catfish. Brain Res. 231: 185–190.

    Article  PubMed  Google Scholar 

  • Peters, R.C., G.W. van Steenderen & K. Kotrschal. 1987. A chemoreceptive function for the anterior dorsal fin in rocklings (Gaidropsarus andCiliata: Teleostei: Gadidae): electrophysiological evidence. J. Mar. Biol. Ass. U.K. 67: 819–823.

    Google Scholar 

  • Peters, R.C., K. Kotrschal, W.-D. Krautgartner & J. Atema. 1989. A novel chemosensory system in fish: electrophysiological evidence for mucus detection by solitary chemoreceptor cells in rocklings (Ciliata mustela, Gadidae). Biol. Bull. 177: 329.

    Google Scholar 

  • Peters, R.C., K. Kotrschal & W.-D. Krautgartner. 1991. Solitary chemoreceptor cells ofCiliata mustela (Gadidae, Teleostei) are tuned to mucoid stimuli. Chem. Sens. 16: 31–42.

    Google Scholar 

  • Reutter, K. 1986. Chemoreceptors. pp. 586–604. In: J. Bereiter-Hahn, A.G. Matoltsy & K.S. Richards (ed.) Biology of the Integument, 2 Vertebrates, Springer-Verlag, Berlin.

    Google Scholar 

  • Schiemer, F. 1985. Die Bedeutung der Augewässer als Schutzzonen für die Fischfauna. Österreichs Wasserwirtschaft 37: 239–245.

    Google Scholar 

  • Schiemer, F. 1988. Gefährdete Cypriniden — Indikatoren für die Ökologische Intaktheit von Fluβsystemen. Natur und Landschaft 63: 370–373.

    Google Scholar 

  • Schulte, E. & A. Holl. 1972. Feibau der Kopftentakel und ihrer Sinnesorgane beiBlennius tentacularis (Pisces, Blenniiformes). Mar. Biol. 12: 67–80.

    Google Scholar 

  • Sibbing, F.A. 1988. Specializations and limitations of utilization of food by carp,Cyprinus carpio: a study of oral food processing. Env. Biol. Fish. 22: 161–178.

    Google Scholar 

  • Silver, W.L. 1987. The common chemical sense. pp. 65–87. In: T.E. Finger & W.L. Silver (ed.) Neurobiology of Taste and Smell, J. Wiley, New York.

    Google Scholar 

  • Silver, W.L. & T.E. Finger. 1984. Electrophysiological examination of a non-olfactory, non-gustatory chemosense in the searobin,Prionotus carolinus. J. Comp. Physiol. A 154: 167–174.

    Article  Google Scholar 

  • Todd, J.H., J. Atema & J.E. Bardach. 1967. Chemical communication in social behavior of a fish, the yellow bullhead (Ictalurus natalis). Science 158: 672–673.

    PubMed  Google Scholar 

  • Whitear, M. 1952. The innervation of the skin of teleost fishes. Q. J. Microsc. Sci. 93: 298–305.

    Google Scholar 

  • Whitear, M. 1965. Presumed sensory cells in fish epidermis. Nature 208: 703–704.

    Google Scholar 

  • Whitear, M. 1971. Cell specialization and sensory function in fish epidermis. J. Zool. (Lond.) 163: 237–264.

    Google Scholar 

  • Whitear, M. 1976. Identification of the epidermal ‘Stiftchen-zellen’ of frog tadpoles by electron microscopy. Cell Tissue Res. 175: 391–402.

    Article  PubMed  Google Scholar 

  • Whitear, M. 1991. Solitary chemoreceptor cell. In: T.J. Hara (ed.) Chemoreception in Fishes (in press).

  • Whitear, M. & K. Kotrschal. 1988. The chemosensory anterior dorsal fin in rocklings (Gaidropsarus andCiliata, Teleostei, Gadidae): activity, fine structure and innervation. J. Zool. (Lond.) 216: 339–366.

    Google Scholar 

  • Whitear, M. & E.B. Lane. 1983. Oligovillous cells of the epidermis: sensory elements of lamprey skin. J. Zool. (Lond.) 199: 359–384.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotrschal, K. Quantitative scanning electron microscopy of solitary chemoreceptor cells in cyprinids and other teleosts. Environ Biol Fish 35, 273–282 (1992). https://doi.org/10.1007/BF00001894

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00001894

Key words

Navigation