Skip to main content

Analysis of Segmented Flow in Microchannel Reactors

  • Living reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology

Abstract

Mathematical model of segmented (Taylor) flow hydrodynamics in microchannels was built up on the base of fundamental approach (continuity and Navier-Stokes equations). Velocity profiles in the liquid slug, liquid film, and in the bubble (droplet), bubble velocity, pressure drop, dispersed gas, or liquid hold-up were calculated by using this model. Recently, this model was extended to the non-Newtonian fluids (with power law rheology). Three-layer Taylor flow model was created in order to simplify understanding of the inner transfer phenomena within slugs of continuous phase and the droplet of dispersed phase. It was shown that process intensification is caused by Taylor vortices both in continuous and dispersed phases. Radii of the center of Taylor vortices, by-pass, and transit films along with the slug and droplet lengths define geometry of three-layer Taylor flow. The three-layer approach allows to calculate convective transport within segmented flow quickly (compared to CFD calculations) and to analyze systematically the influence of various factors on the mass and heat transfer rates. The frequency of circulations within liquid slugs was revealed as the most important factor defining the mass transfer in segmented flow. The coincidence of the obtained theoretical results was verified by numerous experimental data available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • R.S. Abiev, Theor. Found. Chem. Eng. 42, 2 (2008)

    Google Scholar 

  • R.S. Abiev, Theor. Found. Chem. Eng. 43, 3 (2009)

    Google Scholar 

  • R.S. Abiev, Theor. Found. Chem. Eng. 44, 1 (2010)

    Google Scholar 

  • R.S. Abiev, Theor. Found. Chem. Eng. 45, 2 (2011)

    Google Scholar 

  • R.S. Abiev, I.V. Lavretsov, Chem. Eng. Sci. 74 (2012)

    Google Scholar 

  • R.S. Abiev, Chem. Eng. J. 227 (2013)

    Google Scholar 

  • R.S. Abiev, S.V. Svetlov, S. Haase, Chem. Eng. Technol (2017)

    Google Scholar 

  • R.S. Abiev, Chem. Eng. Sci. 174С (2017)

    Google Scholar 

  • R.S. Abiev, C. Butler, E. Cid, B. Lalanne, A.-M. Billet, Chem. Eng. Sci. 207 (2019)

    Google Scholar 

  • R.S. Abiev, Ind. Eng. Chem. Res. 59 (2020a)

    Google Scholar 

  • R.S. Abiev, Chem. Eng. J. Advances 4 (2020b)

    Google Scholar 

  • R.S. Abiev, J Flow Chem 11 (2021)

    Google Scholar 

  • R.S. Abiev, Chem. Eng. Sci. 247 (2022a)

    Google Scholar 

  • R.S. Abiev, Chem. Eng. Sci. 250 (2022b)

    Google Scholar 

  • M.K. Akbar, S.M. Ghiaasiaan, Ind. Eng. Chem. Res. 45, 15 (2006)

    Article  Google Scholar 

  • P. Aussillous, D. Quéré, Phys. Fluids 12, 10 (2000)

    Article  Google Scholar 

  • J.M. van Baten, R. Krishna, Chem. Eng. Sci. 59 (2004)

    Google Scholar 

  • J.M. van Baten, R. Krishna, Chem. Eng. Sci. 60 (2005)

    Google Scholar 

  • T. Bauer, M. Schubert, R. Lange, R.S. Abiev, Russ. J. Appl. Chem. 79, 7 (2006)

    Article  Google Scholar 

  • G. Bercic, A. Pintar, Chem. Eng. Sci. 52, 21 (1997)

    Google Scholar 

  • C. Butler, E. Cid, A.M. Billet, Chem. Eng. Res. Des. 115 (2016)

    Google Scholar 

  • C. Butler, B. Lalanne, K. Sandmann, E. Cid, A.-M. Billet, Int. J. Multi- phase Flow 105 (2018)

    Google Scholar 

  • C. Butler, E. Cid, A.-M. Billet, B. Lalanne, Int. J. Heat and Mass Transf. 179 (2021)

    Google Scholar 

  • L. Chen, Y.S. Tian, T.G. Karayiannis, Int. J. of Heat and Mass Transfer 49, 21–22 (2006)

    Google Scholar 

  • D. Chisholm, A.D.K. Laird, Trans. ASME 80, 2 (1958)

    Google Scholar 

  • D. Chisholm, Int. J. Heat Mass Transf. 10 (1967)

    Google Scholar 

  • J.W. Coleman, S. Garimella, Int. J. of Heat and Mass Transfer 42, 15 (1999)

    Article  Google Scholar 

  • A. Cybulski, J.A. Moulijn, A. Stankiewicz, Novel Concepts in Catalysis and Chemical Reactors: Improving the Efficiency for the Future (WILEY-VCH Verlag & Co. KGaA. Weinheiin, Germany, 2010)

    Google Scholar 

  • V. Dore, D. Tsaoulidis, P. Angeli, Chem. Eng. Sci. 80 (2012)

    Google Scholar 

  • A.E. Dukler, W. Moye III, R.G. Cleveland, AICHE J. 10 (1964)

    Google Scholar 

  • S. Garimella, J.D. Killion, J.W. Coleman, J. Fluids Eng, Trans. ASME 124 (2002)

    Google Scholar 

  • A. Ghaini, A. Mescher, D.W. Agar, Chem. Eng. Sci. 66, 6 (2011)

    Article  Google Scholar 

  • S. Haase, D.Y. Murzin, T. Salmi, Chem. Eng. Res. Des. 113 (2016)

    Google Scholar 

  • S. Haase, T. Bauer, G. Hilpmann, M. Lange, R. Abiev, Theor. Found. Chem. Eng. 54 (2020)

    Google Scholar 

  • V. Hessel, H. Löwe, A. Müller, G. Kolb, Chemical Micro Process Engineering: Processing and Plants (Wiley-VCH, Weinheim, 2005), p. 651

    Book  Google Scholar 

  • S. Irandoust, B. Andersson, Chem. Eng. Sci. 43 (1988)

    Google Scholar 

  • K.F. Jensen, Chem. Eng. Sci. 56, 2 (2001)

    Article  Google Scholar 

  • K.F. Jensen, AICHE J. 63, 3 (2017)

    Article  Google Scholar 

  • M.N. Kashid, I. Gerlach, S. Goetz, J. Franzke, J.F. Acker, F. Platte, D.W. Agar, S. Turek, Ind. Eng. Chem. Res. 44 (2005)

    Google Scholar 

  • M.N. Kashid, A. Renken, L. Kiwi-Minsker, Ind. Eng. Chem. Res. 50 (2011)

    Google Scholar 

  • M.T. Kreutzer, P. Du, J.J. Heiszwolf, F. Kapteijn, J.A. Moulijn, Chem. Eng. Sci. 56 (2001)

    Google Scholar 

  • M.T. Kreutzer, F. Kapteijn, J.A. Moulijn, J.J. Heiszwolf, Chem. Eng. Sci. 60 (2005a)

    Google Scholar 

  • M.T. Kreutzer, F. Kapteijn, J.A. Moulijn, et al., AICHE J. 51 (2005b)

    Google Scholar 

  • R. Lindken, M. Rossi, S. Grosse, J. Westerweel, Lab Chip 9 (2009)

    Google Scholar 

  • H. Liu, C.O. Vandu, R. Krishna, Ind. Eng. Chem. Res. 44 (2005)

    Google Scholar 

  • R.W. Lockhart, R.C. Martinelli, Chem. Eng. Prog. 45 (1949)

    Google Scholar 

  • M. Mei, G. Hébrard, N. Dietrich, K. Loubière, Chem. Eng. Sci. 222 (2020)

    Google Scholar 

  • A. Onea, M. Wörner, D.G. Cacuci, Chem. Eng. Sci. 64 (2009)

    Google Scholar 

  • S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Carlsbad, 1980)

    MATH  Google Scholar 

  • E. Roumpea, M. Chinaud, P. Angeli, AICHE J. 63 (2017)

    Google Scholar 

  • N. Shao, A. Gavriilidis, P. Angeli, Chem. Eng. Sci. 160, 3 (2010)

    Google Scholar 

  • M. Suo, P. Griffith, J. Basic Eng. 86 (1964)

    Google Scholar 

  • S.D. Svetlov, R.S. Abiev, Theor. Found Chem. Eng. 50, 6 (2016)

    Article  Google Scholar 

  • J.R. Thome, V. Dupont, A.M. Jacobi, Int. J. Heat Mass Transf. 47 (2004)

    Google Scholar 

  • T. Taha, Z.F. Cui, Chem. Eng. Sci. 61, 2 (2006)

    Google Scholar 

  • G.I. Taylor, J. Fluid Mech. 10 (1961)

    Google Scholar 

  • T.C. Thulasidas, M.A. Abraham, R.L. Cerro, Chem. Eng. Sci. 50, 2 (1995)

    Article  Google Scholar 

  • T.C. Thulasidas, M.A. Abraham, R.L. Cerro, Chem. Eng. Sci. 52, 17 (1997)

    Article  Google Scholar 

  • A.N. Tsoligkas, M.J.H. Simmons, J. Wood, Chem. Eng. Sci. 62 (2007)

    Google Scholar 

  • C.O. Vandu, H. Liu, R. Krishna, Chem. Eng. Sci. 60 (2005)

    Google Scholar 

  • M. Woo, S. Tischer, O. Deutschmann, M. Wörner, Chem. Eng. Sci. 230 (2021)

    Google Scholar 

  • M. Wörner, B. Ghidersa, A. Onea, Int. J. Heat and Fluid Flow 28 (2007)

    Google Scholar 

  • M. Wörner, Microfluid. Nanofluid. 12 (2012)

    Google Scholar 

  • C. Yao, Y. Liu, C. Xu, S. Zhao, G. Chen, AICHE J. 64 (2018)

    Google Scholar 

  • J. Yue, G.W. Chen, Q. Yuan, L.G. Luo, Y. Gonthier, Chem. Eng. Sci. 62 (2007)

    Google Scholar 

  • T.S. Zhao, Q.C. Bi, Int. J. Mult. Flow 44, 13 (2001)

    Google Scholar 

  • Q. Zhao, H. Ma, Y. Liu, C. Yao, L. Yang, G. Chen, Chem. Eng. Sci. 231 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abiev, R. (2023). Analysis of Segmented Flow in Microchannel Reactors. In: Yeoh, G.H., Joshi, J.B. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-86-6_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-86-6_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-86-6

  • Online ISBN: 978-981-4585-86-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics