Skip to main content

Reflectarray Antennas

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

The reflectarray is a novel type of high-gain antennas, which combines some of favorable features of reflectors and arrays. It consists of a space-feeding primary source and an array of reflecting elements with individually predesigned phases to collimate or shape the high-gain beam in the desired direction. In this chapter, the operating principles of reflectarray antennas will first be introduced. Then the design procedure and analysis methods of both reflectarray elements and systems will be explained in detail and some practical design considerations will be discussed. Finally, some latest developments and applications, such as broadband and multiband techniques, reconfigurable reflectarray designs, shaped-beam and multi-beam reflectarrays, etc., will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmadi A, Ghadarghadr S, Mosallaei H (2010) An optical reflectarray nanoantenna: the concept and design. Opt Express 18:123–133

    Article  Google Scholar 

  • Almajali E, MaNamara D, Shaker J, Chaharmir MR (2012) Derivation and validation of the basic design equations for symmetric sub-reflectarrays. IEEE Trans Antennas Propag 60:2336–2346

    Article  MathSciNet  MATH  Google Scholar 

  • An W, Xu S, Yang F (2014a) A metal-only reflectarray antenna using slot-type elements. IEEE Antennas Wirel Propag Lett 13:1553–1556

    Article  Google Scholar 

  • An W, Xu S, Yang F (2014b) A Ka-band reflectarray antenna integrated with solar cells. IEEE Trans Antennas Propag 62:5539–5546

    Article  MathSciNet  Google Scholar 

  • Arrebola M, De Haro L, Encinar JA (2008) Analysis of dual-reflector antennas with a reflectarray as subreflector. IEEE Antennas Propag Mag 50:39–51

    Article  Google Scholar 

  • Balanis CA (2005) Antenna theory: analysis and design, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Berry DG, Malech RG, Kennedy WA (1963) The reflectarray antenna. IEEE Trans Antennas Propag 11:645–651

    Article  Google Scholar 

  • Bialkowski ME, Sayidmarie KH (2008) Investigations into phase characteristics of a single-layer reflectarray employing patch or ring elements of variable size. IEEE Trans Antennas Propag 56:3366–3372

    Article  Google Scholar 

  • Bialkowski ME, Song JH (2001) Dual linearly polarized reflectarray using aperture coupled microstrip patches. Proc IEEE Antennas Propag Symp 3:486–489

    Google Scholar 

  • Bialkowski ME, Song HJ (2002) Investigations into a power-combining structure using a reflect array of dual-feed aperture-coupled microstrip patch antennas. IEEE Trans Antennas Propag 50:841–849

    Article  Google Scholar 

  • Bialkowski ME, Robinson AW, Song HJ (2002) Design, development, and testing of X-band amplifying reflectarrays. IEEE Trans Antennas Propag 50:1065–1076

    Article  Google Scholar 

  • Bozzi M, Germani S, Perregrini L (2004) A figure of merit for losses in printed reflectarray elements. IEEE Antennas Wirel Propag Lett 3:257–260

    Article  Google Scholar 

  • Cabria L, Garcia JA, Gutierrez-Rios J, Tazon A, Vassallo J (2009) Active reflectors: possible solutions based on reflectarrays and Fresnel reflectors. Intl J Antennas Propag 2009:653952

    Article  Google Scholar 

  • Cadoret D, Laisne A, Gillard R, Legay H (2005) A new reflectarray cell using microstrip patches loaded with slots. Microw Opt Tech Lett 44:270–272

    Article  Google Scholar 

  • Carassco E, Encinar JA, Barba M (2008) Bandwidth improvement in large reflectarrays by using true-time delay. IEEE Trans Antennas Propag 56:2496–2503

    Article  Google Scholar 

  • Carassco E, Encinar JA, Barba M (2012) X-band reflectarray antenna with switching-beam using PIN diodes and gathered elements. IEEE Trans Antennas Propag 60:5700–5708

    Article  Google Scholar 

  • Carassco E, Tamagnone M, Perruisseau-Carrier J (2013) Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection. Appl Phys Lett 102:104103

    Article  Google Scholar 

  • Chaharmir MR, Shaker J, Cuhaci M, Sebak A (2003a) Reflectarray with variable slots on ground plane. IEE Proc Microw Antennas Propag 150:436–439

    Article  Google Scholar 

  • Chaharmir MR, Shaker J, Cuhaci M, Sebak A (2003b) Mechanically controlled reflectarray antenna for beam switching and beam shaping in millimetre-wave applications. Electron Lett 39:591–592

    Article  Google Scholar 

  • Chaharmir MR, Shaker J, Cuhaci M, Ittipiboon A (2006a) Broadband reflectarray antenna with double cross loops. Electron Lett 42:65–66

    Article  Google Scholar 

  • Chaharmir MR, Shaker J, Cuhaci M, Sebak A (2006b) Novel photonically-controlled reflectarray antenna. IEEE Trans Antennas Propag 54:1134–1141

    Article  Google Scholar 

  • Chaharmir MR, Shaker J, Cuhaci M, Ittipiboon A (2009) Wideband reflectarray research at the communications research centre Canada. Proc Intl Symp Antenna Tech Appl Electromagn 1−4

    Google Scholar 

  • Chaharmir MR, Shaker J, Gagnon N, Lee D (2010) Design of broadband, single layer dual-band large reflectarray using multi open loop elements. IEEE Trans Antennas Propag 58:2875–2883

    Article  Google Scholar 

  • Chang DC, Huang MC (1995) Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization. IEEE Trans Antennas Propag 43:829–834

    Article  Google Scholar 

  • CST (2014) www.cst.com, Accessed on 16 March 2015

  • De Vita P, Freni A, Dassano GL, Pirinoli P, Zich RE (2007) Broadband element for high-gain single-layer printed reflectarray antenna. Electron Lett 43:1247–1248

    Article  Google Scholar 

  • Deng R, Yang F, Xu S (2014) Design and comparison of four different reflectarray antennas towards THz applications. Proc IEEE Antennas Propag Symp 1019−1020

    Google Scholar 

  • Dreyer P, Morales-Masis M, Nicolay S, Ballif C, Perruisseau-Carrier J (2014) Copper and transparent-conductor reflectarray elements on thin-film solar cell panels. IEEE Trans Antennas Propag 62:3813–3818

    Article  Google Scholar 

  • Encinar JA (1996) Design of a dual frequency reflectarray using microstrip stacked patches of variable size. Electron Lett 32:1049–1050

    Article  Google Scholar 

  • Encinar JA (2001) Design of two-layer printed reflectarray using patches of variable size. IEEE Trans Antennas Propag 49:1403–1410

    Article  Google Scholar 

  • Encinar JA, Zornoza JA (2003) Broadband design of three-layer printed reflectarrays. IEEE Trans Antennas Propag 51:1662–1664

    Article  Google Scholar 

  • Encinar JA, Datashvili LS, Zornoza JA, Arrebola M, Sierra-Castaner M, Besada-Sanmartin JL, Baier H, Legay H (2006) Dual-polarization dual-coverage reflectarray for space applications. IEEE Trans Antennas Propag 54:2827–2837

    Article  Google Scholar 

  • Encinar JA, Arrebola M, De La Fuente LF, Toso G (2011) A transmit-receive reflectarray antenna for direct broadcast satellite applications. IEEE Trans Antennas Propag 59:3255–3264

    Article  Google Scholar 

  • FEKO (2014) www.feko.info, Accessed on 16 March 2015

  • Fusco VF (2005) Mechanical beam scanning reflectarray. IEEE Trans Antennas Propag 53:3482–3484

    Article  Google Scholar 

  • Gaebler A, Moessinger A, Goelden F, Manabe A, Goebel M, Follmann R, Koether D, Modes C, Kipka A, Deckelmann M, Rabe T, Schulz B, Kuchenbecker P, Lapanik A, Mueller S, Haase W, Jakoby R (2009) Liquid crystal-reconfigurable antenna concepts for space applications at microwave and millimeter waves. Intl J Antennas Propag 2009:876989

    Article  Google Scholar 

  • Gianvittorio JP, Rahmat-Samii Y (2006) Reconfigurable patch antennas for steerable reflectarray applications. IEEE Trans Antennas Propag 54:1388–1392

    Article  Google Scholar 

  • Ginn JC, Lail BA, Boreman GD (2007) Phase characterization of reflectarray elements at infrared. IEEE Trans Antennas Propag 55:2989–2993

    Article  Google Scholar 

  • Han C, Chang K (2003) Ka-band reflectarray using ring elements. Electron Lett 39:491–493

    Article  Google Scholar 

  • Han C, Rodenbeck C, Huang J, Chang K (2004) A C/Ka dual-frequency dual-layer circularly polarized reflectarray antenna with microstrip ring elements. IEEE Trans Antennas Propag 52:2871–2876

    Article  Google Scholar 

  • Hannan PW, Balfour MA (1965) Simulation of phase array antennas in waveguides. IEEE Trans Antennas Propag 13:342–353

    Article  Google Scholar 

  • HFSS (2014) www.ansys.com, Accessed on 16 March 2015

  • Hu W, Cahill R, Encinar JA, Dickie R, Gamble H, Fusco V, Grant N (2008) Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal. IEEE Trans Antennas Propag 56:3112–3117

    Article  Google Scholar 

  • Hu W, Arrebola M, Cahill R, Encinar JA, Fusco V, Gamble HS, Alvarez Y, Las-Heras F (2009) 94 GHz dual-reflector antenna with reflectarray subreflector. IEEE Trans Antennas Propag 57:3043–3050

    Article  Google Scholar 

  • Huang J (1991) Microstrip reflectarray. Proc IEEE Antennas Propag Symp 612−615

    Google Scholar 

  • Huang J, Encinar JA (2008) Reflectarray antennas. Wiley, New York

    Google Scholar 

  • Huang J, Pogorzelski RJ (1998) A Ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Trans Antennas Propag 46:650–656

    Article  Google Scholar 

  • Huang J, Zawadzki M (2000) Antennas integrated with solar arrays for space vehicle applications. Proc Intl Symp Antenna Propag Electromagn Theory 86−89

    Google Scholar 

  • Hum SV, Perruisseau-Carrier J (2014) Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans Antennas Propag 62:183–198

    Article  Google Scholar 

  • Hum SV, Okoniewski M, Davies RJ (2007) Modeling and design of electronically tunable reflectarrays. IEEE Trans Antennas Propag 55:2200–2210

    Article  Google Scholar 

  • Javor RD, Wu X-D, Chang K (1995) Design and performance of a microstrip reflectarray antenna. IEEE Trans Antennas Propag 43:932–939

    Article  Google Scholar 

  • Kamoda H, Iwasaki T, Tsumochi J, Kuki T, Hashimoto O (2011) 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters. IEEE Trans Antennas Propag 59:2524–2531

    Article  Google Scholar 

  • Kishor KK, Hum SV (2012) An amplifying reconfigurable reflectarray antenna. IEEE Trans Antennas Propag 60:197–205

    Article  Google Scholar 

  • Long SA, Huff GH (2011) A fluidic loading mechanism for phase reconfigurable reflectarray elements. IEEE Antennas Wirel Propag Lett 10:876–879

    Article  Google Scholar 

  • Malfajani RS, Atlasbaf Z (2014) Design and implementation of a dual-band single layer reflectarray in X and K bands. IEEE Trans Antennas Propag 62:4425–4431

    Article  MATH  Google Scholar 

  • Mao Y, Wang C, Yang F, Elsherbeni AZ (2012) A single-layer broad-band reflectarray design using dual-frequency phase synthesis method. Proc Asia Pac Microw Conf 64−66

    Google Scholar 

  • Milon MA, Cadoret D, Gillard R, Legay H (2007) Surrounded-element approach for the simulation of reflectarray radiating cells. IET Microw Antennas Propag 1:289–293

    Article  Google Scholar 

  • Mohammadirad M, Komjani N, Chaharmir MR, Shaker J, Sebak AR (2012) Impact of feed position on the operating band of broadband reflectarray antenna. IEEE Antennas Wirel Propag Lett 11:1104–1107

    Article  Google Scholar 

  • Moustafa L, Gillard R, Peris F, Loison R, Legay H, Girard E (2011) The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities. IEEE Antennas Wirel Propag Lett 10:71–74

    Article  Google Scholar 

  • Nayeri P, Yang F, Elsherbeni AZ (2010) Broadband reflectarray antennas using double-layer sub-wavelength patch elements. IEEE Antennas Wirel Propag Lett 18:19–29

    Google Scholar 

  • Nayeri P, Yang F, Elsherbeni AZ (2011) Bandwidth improvement of reflectarray antennas using closely spaced elements. Prog Electromagn Res 9:1139–1142

    Google Scholar 

  • Nayeri P, Yang F, Elsherbeni AZ (2012) Design and experiment of a single-feed quad-beam reflectarray antenna. IEEE Trans Antennas Propag 60:1166–1171

    Article  Google Scholar 

  • Nayeri P, Elsherbeni AZ, Yang F (2013a) Radiation analysis approaches for reflectarray antennas. IEEE Antennas Propag Mag 55:127–134

    Article  Google Scholar 

  • Nayeri P, Yang F, Elsherbeni AZ (2013b) Bifocal design and aperture phase optimizations of reflectarray antennas for wide-angle beam scanning performance. IEEE Trans Antennas Propag 61:4588–4597

    Article  Google Scholar 

  • Nayeri P, Liang M, Sabory-Garcia RA, Tuo M, Yang F, Gehm M, Xin H, Elsherbeni AZ (2014) 3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves. IEEE Trans Antennas Propag 62:2000–2008

    Article  Google Scholar 

  • Niu T, Withayachumnankul W, Ung B, Menekse H, Bhaskaran M, Sriram S, Fumeaux C (2012) Design and implementation of terahertz reflectarray. In: 37th international conference on infrared, millimeter terahertz waves, Wollongong, pp 1–2

    Google Scholar 

  • Perruisseau-Carrier J (2010) Dual-polarized and polarization-flexible reflective cells with dynamic phase control. IEEE Trans Antennas Propag 58:1494–1502

    Article  Google Scholar 

  • Perruisseau-Carrier J, Skrivervik AK (2008) Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360° phase range. IEEE Antennas Wirel Propag Lett 7:138–141

    Article  Google Scholar 

  • Phillion RH, Okoniewski M (2008) Improving the phase resolution of a micromotor-actuated phased reflectarray. Proc Microsyst Nanoelectron Res Conf 169–172

    Google Scholar 

  • Pozar DM (2007) Wideband reflectarrays using artificial impedance surfaces. Electron Lett 43:148–149

    Article  Google Scholar 

  • Pozar DM, Metzler TA (1993) Analysis of a reflectarray antenna using microstrip patches of variable size. Electron Lett 29:657–658

    Article  Google Scholar 

  • Pozar DM, Targonski SD, Syrigos SD (1997) Design of millimeter wave microstrip reflectarrays. IEEE Trans Antennas Propag 45:287–296

    Article  Google Scholar 

  • Pozar DM, Targonski SD, Pokuls R (1999) A shaped-beam microstrip patch reflectarray. IEEE Trans Antennas Propag 47:1167–1173

    Article  Google Scholar 

  • Rahmat-Samii Y (1979) Useful coordinate transformations for antenna applications. IEEE Trans Antennas Propag 27:571–574

    Article  Google Scholar 

  • Rahmat-Samii Y (1988) Reflector antennas. In: Lo YT, Lee SW (eds) Antenna handbook: theory, applications, and design. Van Nostrand Reinhold, New York

    Google Scholar 

  • Rahmat-Samii Y, Cramer PJ, Woo K, Lee SW (1981) Realizable feed-element patterns for multibeam reflector antenna analysis. IEEE Trans Antennas Propag 29:961–963

    Article  Google Scholar 

  • Rajagopalan H, Rahmat-Samii Y, Imbriale WA (2008) RF MEMS actuated reconfigurable reflectarray patch-slot element. IEEE Trans Antennas Propag 56:3689–3699

    Article  Google Scholar 

  • Rajagopalan H, Xu S, Rahmat-Samii Y (2012a) On understanding the radiation mechanism of reflectarray antennas: an insightful and illustrative approach. IEEE Antennas Propag Mag 54:14–38

    Article  Google Scholar 

  • Rajagopalan H, Xu S, Rahmat-Samii Y (2012b) Reflector antenna distortion compensation using sub-reflectarrays: simulations and experimental demonstration. IEEE Antennas Propag Mag 54:235–246

    Article  Google Scholar 

  • Rajagopalan H, Xu S, Rahmat-Samii Y (2013) Experimental demonstration of reflectarrays acting as conic section subreflectors in a dual reflector system. IEEE Trans Antennas Propag 61:5475–5484

    Article  Google Scholar 

  • Rengarajan SR (2009) Reciprocity considerations in microstrip reflectarrays. IEEE Antennas Wirel Propag Lett 8:1206–1209

    Article  Google Scholar 

  • Rodrigo D, Jofre L, Perruisseau-Carrier J (2013) Unit cell for frequency-tunable beamscanning reflectarrays. IEEE Trans Antennas Propag 61:5992–5999

    Article  Google Scholar 

  • Romanofsky RR (2007) Advances in scanning reflectarray antennas based on ferroelectric thin-film phase shifters for deep-space communications. Proc IEEE 95:1968–1975

    Article  Google Scholar 

  • Shaker J, Chaharmir MR, Ethier J (2014) Reflectarray antennas: analysis, design, fabrication, and measurement. Artech House, USA

    Google Scholar 

  • Smith T, Gothelf U, Kim OS, Breinbjerg O (2013) Design, manufacturing, and testing of a 20/30-GHz dual-band circularly polarized reflectarray antenna. IEEE Antennas Wirel Propag Lett 12:1480–1483

    Article  Google Scholar 

  • Sorrentino R, Gatti RV, Marcaccioli L (2009) Recent advances on millimetre wave reconfigurable reflectarrays. Proc 3rd Euro Conf Antenna Propag 2527−2531

    Google Scholar 

  • Tienda C, Arrebola M, Encinar JA (2012) Recent developments of reflectarray antennas in dual-reflector configurations. Intl J Antennas Propag 2012:125287

    Article  Google Scholar 

  • Tienda C, Encinar JA, Arrebola M, Barba M, Carrasco E (2013) Design, manufacturing and test of a dual-reflectarray antenna with improved bandwidth and reduced cross-polarization. IEEE Trans Antennas Propag 61:1180–1190

    Article  Google Scholar 

  • Wu B, Sutinjo A, Potter ME, Okoniewski M (2008) On the selection of the number of bits to control a dynamic digital MEMS reflectarray. IEEE Antennas Wirel Propag Lett 7:183–186

    Article  Google Scholar 

  • Xu S, Rahmat-Samii Y, Imbriale WA (2009) Subreflectarrays for reflector surface distortion compensation. IEEE Trans Antennas Propag 57:364–372

    Article  Google Scholar 

  • Yang F, Ang Y, Elsherbeni AZ, Huang J (2008) Single-layer multi-band circularly polarized reflectarray antenna: concept, design, and measurement. Proc URSI Gen Assem 1−4

    Google Scholar 

  • Yang F, Nayeri P, Elsherbeni AZ, Ginn JC, Shelton DJ, Boreman GD, Rahmat-Samii Y (2012) Reflectarray design at infrared frequencies: effects and models of material loss. IEEE Trans Antennas Propag 60:4202–4209

    Article  Google Scholar 

  • Yu A, Yang F, Elsherbeni AZ, Huang J (2009) A single layer broadband circularly polarized reflectarray based on the element rotation technique. Proc IEEE Antennas Propag Symp 1−4

    Google Scholar 

  • Yu A, Yang F, Elsherbeni AZ, Huang J (2010a) Experimental demonstration of a single layer tri-band circularly polarized reflectarray. Proc IEEE Antennas Propag Symp 1−4

    Google Scholar 

  • Yu A, Yang F, Elsherbeni AZ, Huang J, Rahmat-Samii Y (2010b) Aperture efficiency analysis of reflectarray antennas. Microw Opt Tech Lett 52:364–372

    Article  Google Scholar 

  • Yu A, Yang F, Elsherbeni AZ, Huang J, Kim Y (2012) An offset-fed X-band reflectarray antenna using a modified element rotation technique. IEEE Trans Antennas Propag 60:1619–1624

    Article  Google Scholar 

  • Zainud-Deen SH, Malhat HAE, Gaber SM, Awadalla KH (2013) Perforated nanoantenna reflectarray. Prog Electromagn Res 29:253–265

    Article  Google Scholar 

  • Zhou M, Sorensen SB, Jorgensen E, Meincke P, Kim OS, Breinbjerg O (2011) An accurate technique for calculation of radiation from printed reflectarrays. IEEE Antennas Wirel Propag Lett 10:1081–1084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenheng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Xu, S., Yang, F. (2016). Reflectarray Antennas. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_45

Download citation

Publish with us

Policies and ethics