Skip to main content

Lipid Metabolism and Immune Checkpoints

  • Chapter
  • First Online:
Lipid Metabolism in Tumor Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1316))

Abstract

Immune checkpoints are essential for the regulation of immune cell functions. Although the abrogation of immunosurveillance of tumor cells is known, the regulators of immune checkpoints are not clear. Lipid metabolism is one of the important metabolic activities in organisms. In lipid metabolism, a large number of metabolites produced can regulate the gene expression and activation of immune checkpoints through various pathways. In addition, increasing evidence has shown that lipid metabolism leads to transient generation or accumulation of toxic lipids that result in endoplasmic reticulum (ER) stress and then regulate the transcriptional and posttranscriptional modifications of immune checkpoints, including transcription, protein folding, phosphorylation, palmitoylation, etc. More importantly, the lipid metabolism can also affect exosome transportation of checkpoints and the degradation of checkpoints by affecting ubiquitination and lysosomal trafficking. In this chapter, we mainly empathize on the roles of lipid metabolism in the regulation of immune checkpoints, such as gene expression, activation, and degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poulose N, Amoroso F, Steele RE, Singh R, Ong CW, Mills IG. Genetics of lipid metabolism in prostate cancer. Nat Genet. 2018;50(2):169–71.

    Article  CAS  PubMed  Google Scholar 

  2. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol. 2017;8(1):1–8.

    PubMed  PubMed Central  Google Scholar 

  3. Gago G, Diacovich L, Gramajo H. Lipid metabolism and its implication in mycobacteria-host interaction. Curr Opin Microbiol. 2018;41:36–42.

    Article  CAS  PubMed  Google Scholar 

  4. Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N, Martins AJ, et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature. 2018;554(7691):255–9.

    Article  CAS  PubMed  Google Scholar 

  5. Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7:10321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13(11):1118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Denoeud J, Moser M. Role of CD27/CD70 pathway of activation in immunity and tolerance. J Leukoc Biol. 2011;89(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  8. Funes SC, Manrique de Lara A, Altamirano-Lagos MJ, Mackern-Oberti JP, Escobar-Vera J, Kalergis AM. Immune checkpoints and the regulation of tolerogenicity in dendritic cells: implications for autoimmunity and immunotherapy. Autoimmun Rev. 2019;18(4):359–68.

    Article  CAS  PubMed  Google Scholar 

  9. Remmerie A, Scott CL. Macrophages and lipid metabolism. Cell Immunol. 2018;330:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem. 2014;289(35):24020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang S, Yang X. Eleutheroside E decreases oxidative stress and NF-kappaB activation and reprograms the metabolic response against hypoxia-reoxygenation injury in H9c2 cells. Int Immunopharmacol. 2020;84:106513.

    Article  CAS  PubMed  Google Scholar 

  12. O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol. 2017;17(10):608–20.

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Wu Y, Lu Q, Wang S, Xing D. Endogenous ApoA-I expression in macrophages: a potential target for protection against atherosclerosis. Clin Chim Acta. 2020;505:55–9.

    Article  CAS  PubMed  Google Scholar 

  15. Farkkila A, Gulhan DC, Casado J, Jacobson CA, Nguyen H, Kochupurakkal B, et al. Author correction: immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat Commun. 2020;11(1):2543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo J, Rizvi H, Egger JV, Preeshagul IR, Wolchok JD, Hellmann MD. Impact of PD-1 blockade on severity of COVID-19 in patients with lung cancers. Cancer Discov. 2020;10:1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kassardjian A, Shintaku PI, Moatamed NA. Expression of immune checkpoint regulators, cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death-ligand 1 (PD-L1), in female breast carcinomas. PLoS One. 2018;13(4):e0195958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Coutzac C, Pernot S, Chaput N, Zaanan A. Immunotherapy in advanced gastric cancer, is it the future? Crit Rev Oncol Hematol. 2019;133:25–32.

    Article  CAS  PubMed  Google Scholar 

  19. Shu CA, Gainor JF, Awad MM, Chiuzan C, Grigg CM, Pabani A, et al. Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21:786.

    Article  CAS  PubMed  Google Scholar 

  20. Pakkala S, Owonikoko TK. Immune checkpoint inhibitors in small cell lung cancer. J Thorac Dis. 2018;10(Suppl 3):S460–S7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;10(9):1330–51.

    Article  CAS  PubMed  Google Scholar 

  22. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  24. Salvi S, Fontana V, Boccardo S, Merlo DF, Margallo E, Laurent S, et al. Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunol Immunother. 2012;61(9):1463–72.

    Article  CAS  PubMed  Google Scholar 

  25. Paulsen EE, Kilvaer TK, Rakaee M, Richardsen E, Hald SM, Andersen S, et al. CTLA-4 expression in the non-small cell lung cancer patient tumor microenvironment: diverging prognostic impact in primary tumors and lymph node metastases. Cancer Immunol Immunother. 2017;66(11):1449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS, et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol. 2001;2(12):1109–16.

    Article  CAS  PubMed  Google Scholar 

  27. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saleh R, Toor SM, Taha RZ, Al-Ali D, Sasidharan Nair V, Elkord E. DNA methylation in the promoters of PD-L1, MMP9, ARG1, galectin-9, TIM-3, VISTA and TGF-beta genes in HLA-DR(−) myeloid cells, compared with HLA-DR(+) antigen-presenting cells. Epigenetics. 2020;15:1–14.

    Article  Google Scholar 

  29. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piancone F, Saresella M, Marventano I, La Rosa F, Caputo D, Mendozzi L, et al. A deficit of CEACAM-1-expressing T lymphocytes supports inflammation in primary progressive multiple sclerosis. J Immunol. 2019;203(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  31. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  33. Philipson BI, O’Connor RS, May MJ, June CH, Albelda SM, Milone MC. 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-kappaB signaling. Sci Signal. 2020;13(625):eaay8248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sugiura D, Maruhashi T, Okazaki IM, Shimizu K, Maeda TK, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364(6440):558–66.

    Article  CAS  PubMed  Google Scholar 

  35. Zappasodi R, Sirard C, Li Y, Budhu S, Abu-Akeel M, Liu C, et al. Rational design of anti-GITR-based combination immunotherapy. Nat Med. 2019;25(5):759–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shevach EM, Stephens GL. The GITR-GITRL interaction: co-stimulation or contrasuppression of regulatory activity? Nat Rev Immunol. 2006;6(8):613–8.

    Article  CAS  PubMed  Google Scholar 

  37. Calmels B, Paul S, Futin N, Ledoux C, Stoeckel F, Acres B. Bypassing tumor-associated immune suppression with recombinant adenovirus constructs expressing membrane bound or secreted GITR-L. Cancer Gene Ther. 2005;12(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  38. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 2016;537(7620):417–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Preite S, Cannons JL, Radtke AJ, Vujkovic-Cvijin I, Gomez-Rodriguez J, Volpi S, et al. Hyperactivated PI3Kdelta promotes self and commensal reactivity at the expense of optimal humoral immunity. Nat Immunol. 2018;19(9):986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deng R, Hurtz C, Song Q, Yue C, Xiao G, Yu H, et al. Extrafollicular CD4(+) T-B interactions are sufficient for inducing autoimmune-like chronic graft-versus-host disease. Nat Commun. 2017;8(1):978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Delaunay M, Caron P, Sibaud V, Godillot C, Collot S, Milia J, et al. Toxicity of immune checkpoints inhibitors. Rev Mal Respir. 2018;35(10):1028–38.

    Article  CAS  PubMed  Google Scholar 

  42. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68.

    Article  CAS  PubMed  Google Scholar 

  43. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–e41.

    Article  PubMed  Google Scholar 

  44. Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol. 2017;47(5):765–79.

    Article  CAS  PubMed  Google Scholar 

  45. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marcucci F, Rumio C, Corti A. Tumor cell-associated immune checkpoint molecules—drivers of malignancy and stemness. Biochim Biophys Acta Rev Cancer. 2017;1868(2):571–83.

    Article  CAS  PubMed  Google Scholar 

  47. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538–43.

    Article  CAS  PubMed  Google Scholar 

  48. Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell. 2015;17(3):341–52.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Wang H, Zhao Q, Xia Y, Hu X, Guo J. PD-L1 induces epithelial-to-mesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med Oncol. 2015;32(8):212.

    Article  PubMed  CAS  Google Scholar 

  50. Saleh R, Taha RZ, Sasidharan Nair V, Alajez NM, Elkord E. PD-L1 blockade by atezolizumab downregulates signaling pathways associated with tumor growth, metastasis, and hypoxia in human triple negative breast cancer. Cancers (Basel). 2019;11(8):1050.

    Article  CAS  Google Scholar 

  51. Gao L, Guo Q, Li X, Yang X, Ni H, Wang T, et al. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. EBioMedicine. 2019;41:395–407.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ge H, Mu L, Jin L, Yang C, Chang YE, Long Y, et al. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM. Int J Cancer. 2017;141(7):1434–44.

    Article  CAS  PubMed  Google Scholar 

  53. Nakaima Y, Watanabe K, Koyama T, Miura O, Fukuda T. CD137 is induced by the CD40 signal on chronic lymphocytic leukemia B cells and transduces the survival signal via NF-kappaB activation. PLoS One. 2013;8(5):e64425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Palma C, Binaschi M, Bigioni M, Maggi CA, Goso C. CD137 and CD137 ligand constitutively coexpressed on human T and B leukemia cells signal proliferation and survival. Int J Cancer. 2004;108(3):390–8.

    Article  CAS  PubMed  Google Scholar 

  55. Li M, Yang Y, Wei J, Cun X, Lu Z, Qiu Y, et al. Enhanced chemo-immunotherapy against melanoma by inhibition of cholesterol esterification in CD8(+) T cells. Nanomedicine. 2018;14(8):2541–50.

    Article  CAS  PubMed  Google Scholar 

  56. Sansregret L, Vanhaesebroeck B, Swanton C. Determinants and clinical implications of chromosomal instability in cancer. Nat Rev Clin Oncol. 2018;15(3):139–50.

    Article  CAS  PubMed  Google Scholar 

  57. Menezo Y, Lichtblau I, Elder K. New insights into human pre-implantation metabolism in vivo and in vitro. J Assist Reprod Genet. 2013;30(3):293–303.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhao M, Bu Y, Feng J, Zhang H, Chen Y, Yang G, et al. SPIN1 triggers abnormal lipid metabolism and enhances tumor growth in liver cancer. Cancer Lett. 2020;470:54–63.

    Article  CAS  PubMed  Google Scholar 

  59. Ahmad F, Patrick S, Sheikh T, Sharma V, Pathak P, Malgulwar PB, et al. Telomerase reverse transcriptase (TERT)—enhancer of zeste homolog 2 (EZH2) network regulates lipid metabolism and DNA damage responses in glioblastoma. J Neurochem. 2017;143(6):671–83.

    Article  CAS  PubMed  Google Scholar 

  60. Ogino S, Kawasaki T, Ogawa A, Kirkner GJ, Loda M, Fuchs CS. Fatty acid synthase overexpression in colorectal cancer is associated with microsatellite instability, independent of CpG island methylator phenotype. Hum Pathol. 2007;38(6):842–9.

    Article  CAS  PubMed  Google Scholar 

  61. Rao CV, Sanghera S, Zhang Y, Biddick L, Reddy A, Lightfoot S, et al. Systemic chromosome instability resulted in colonic transcriptomic changes in metabolic, proliferation, and stem cell regulators in Sgo1−/+ mice. Cancer Res. 2016;76(3):630–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sato Y, Tanaka S, Kinoshita M, Takemura S, Shinkawa H, Kokudo T, et al. Immunosuppressive tumor microenvironment in occupational cholangiocarcinoma: supportive evidence for the efficacy of immune checkpoint inhibitor therapy. J Hepatobiliary Pancreat Sci. 2020;27:860.

    Article  PubMed  Google Scholar 

  63. Choi E, Chang MS, Byeon SJ, Jin H, Jung KC, Kim H, et al. Prognostic perspectives of PD-L1 combined with tumor-infiltrating lymphocytes, Epstein-Barr virus, and microsatellite instability in gastric carcinomas. Diagn Pathol. 2020;15(1):69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leussink S, Aranda-Pardos I. N AG. Lipid metabolism as a mechanism of immunomodulation in macrophages: the role of liver X receptors. Curr Opin Pharmacol. 2020;53:18–26.

    Article  CAS  PubMed  Google Scholar 

  65. Jahangiri A, Dadmanesh M, Ghorban K. STAT3 inhibition reduced PD-L1 expression and enhanced antitumor immune responses. J Cell Physiol. 2020;235:9457.

    Article  CAS  PubMed  Google Scholar 

  66. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, et al. JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 2018;27(1):136–50.e5.

    Article  CAS  PubMed  Google Scholar 

  67. Hu G, He N, Cai C, Cai F, Fan P, Zheng Z, et al. HDAC3 modulates cancer immunity via increasing PD-L1 expression in pancreatic cancer. Pancreatology. 2019;19(2):383–9.

    Article  CAS  PubMed  Google Scholar 

  68. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27(3):409–16.

    Article  CAS  PubMed  Google Scholar 

  69. Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A, et al. HIF-1alpha is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of Tregs in glioblastoma. Cell Rep. 2019;27(1):226–37.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Y, Wang H, Yao H, Li C, Fang JY, Xu J. Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front Pharmacol. 2018;9:536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Tsytsykova AV, Tsitsikov EN, Geha RS. The CD40L promoter contains nuclear factor of activated T cells-binding motifs which require AP-1 binding for activation of transcription. J Biol Chem. 1996;271(7):3763–70.

    Article  CAS  PubMed  Google Scholar 

  72. Sumimoto H, Takano A, Teramoto K, Daigo Y. RAS-mitogen-activated protein kinase signal is required for enhanced PD-L1 expression in human lung cancers. PLoS One. 2016;11(11):e0166626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sayour EJ, Grippin A, De Leon G, Stover B, Rahman M, Karachi A, et al. Personalized tumor RNA loaded lipid-nanoparticles prime the systemic and intratumoral milieu for response to cancer immunotherapy. Nano Lett. 2018;18(10):6195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gonzalez MB, Lane M, Knight EJ, Robker RL. Inflammatory markers in human follicular fluid correlate with lipid levels and body mass index. J Reprod Immunol. 2018;130:25–9.

    Article  CAS  PubMed  Google Scholar 

  75. Devitt A, Griffiths HR, Milic I. Communicating with the dead: lipids, lipid mediators and extracellular vesicles. Biochem Soc Trans. 2018;46(3):631–9.

    Article  CAS  PubMed  Google Scholar 

  76. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature. 2013;499(7459):485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu Q, Tian Y, Zhang J, Zhang H, Gu F, Lu Y, et al. Functions of pancreatic stellate cell-derived soluble factors in the microenvironment of pancreatic ductal carcinoma. Oncotarget. 2017;8(60):102721–38.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sun Z, Mao A, Wang Y, Zhao Y, Chen J, Xu P, et al. Treatment with anti-programmed cell death 1 (PD-1) antibody restored postoperative CD8+ T cell dysfunction by surgical stress. Biomed Pharmacother. 2017;89:1235–41.

    Article  CAS  PubMed  Google Scholar 

  79. Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A. 2017;114(5):1117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gorchs L, Fernandez Moro C, Bankhead P, Kern KP, Sadeak I, Meng Q, et al. Human pancreatic carcinoma-associated fibroblasts promote expression of co-inhibitory markers on CD4(+) and CD8(+) T-cells. Front Immunol. 2019;10:847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chou JP, Ramirez CM, Ryba DM, Koduri MP, Effros RB. Prostaglandin E2 promotes features of replicative senescence in chronically activated human CD8+ T cells. PLoS One. 2014;9(6):e99432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: old drug with a new vision. Life Sci. 2019;218:112–31.

    Article  CAS  PubMed  Google Scholar 

  83. Cummins G, Yung DE, Cox BF, Koulaouzidis A, Desmulliez MPY, Cochran S. Luminally expressed gastrointestinal biomarkers. Expert Rev Gastroenterol Hepatol. 2017;11(12):1119–34.

    Article  CAS  PubMed  Google Scholar 

  84. Basta-Jovanovic G, Bogdanovic L, Radunovic M, Prostran M, Naumovic R, Simic-Ogrizovic S, et al. Acute renal failure—a serious complication in patients after kidney transplantation. Curr Med Chem. 2016;23(19):2012–7.

    Article  CAS  PubMed  Google Scholar 

  85. McKillop IH, Girardi CA, Thompson KJ. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell Signal. 2019;62:109336.

    Article  CAS  PubMed  Google Scholar 

  86. Lin R, Zhang H, Yuan Y, He Q, Zhou J, Li S, et al. Fatty acid oxidation controls CD8(+) tissue-resident memory T-cell survival in gastric adenocarcinoma. Cancer Immunol Res. 2020;8(4):479–92.

    Article  CAS  PubMed  Google Scholar 

  87. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008;7(6):489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Field CS, Baixauli F, Kyle RL, Puleston DJ, Cameron AM, Sanin DE, et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell Metab. 2020;31(2):422–37. e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kawashima M, Tokiwa M, Nishimura T, Kawata Y, Sugimoto M, Kataoka TR, et al. High-resolution imaging mass spectrometry combined with transcriptomic analysis identified a link between fatty acid composition of phosphatidylinositols and the immune checkpoint pathway at the primary tumour site of breast cancer. Br J Cancer. 2020;122(2):245–57.

    Article  CAS  PubMed  Google Scholar 

  90. Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics. 2011;5(3):170–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dobson CM. Protein folding and misfolding. Nature. 2003;426(6968):884–90.

    Article  CAS  PubMed  Google Scholar 

  92. Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol Ther. 2019;203:107401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee S, Min KT. The interface between ER and mitochondria: molecular compositions and functions. Mol Cells. 2018;41(12):1000–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lebeaupin C, Vallee D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69(4):927–47.

    Article  CAS  PubMed  Google Scholar 

  95. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92–6.

    Article  CAS  PubMed  Google Scholar 

  96. Oakes SA. Endoplasmic reticulum proteostasis: a key checkpoint in cancer. Am J Physiol Cell Physiol. 2017;312(2):C93–C102.

    Article  PubMed  Google Scholar 

  97. Yao H, Xu J. Regulation of cancer immune checkpoint: mono- and poly-ubiquitination: tags for fate. Adv Exp Med Biol. 2020;1248:295–324.

    Article  CAS  PubMed  Google Scholar 

  98. Dias-Teixeira KL, Calegari-Silva TC, Medina JM, Vivarini AC, Cavalcanti A, Teteo N, et al. Emerging role for the PERK/eIF2alpha/ATF4 in human cutaneous leishmaniasis. Sci Rep. 2017;7(1):17074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Sidibeh CO, Pereira MJ, Abalo XM, Gretha JB, Skrtic S, Lundkvist P, et al. FKBP5 expression in human adipose tissue: potential role in glucose and lipid metabolism, adipogenesis and type 2 diabetes. Endocrine. 2018;62(1):116–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. D’Arrigo P, Russo M, Rea A, Tufano M, Guadagno E, Del Basso De Caro ML, et al. A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. Oncotarget. 2017;8(40):68291–304.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Strasser R. Protein quality control in the endoplasmic reticulum of plants. Annu Rev Plant Biol. 2018;69:147–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature. 2016;529(7586):326–35.

    Article  CAS  PubMed  Google Scholar 

  103. Jansen G, Maattanen P, Denisov AY, Scarffe L, Schade B, Balghi H, et al. An interaction map of endoplasmic reticulum chaperones and foldases. Mol Cell Proteomics. 2012;11(9):710–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: a cell’s response to stress. Life Sci. 2019;226:156–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gupta AP, Singh P, Garg R, Valicherla GR, Riyazuddin M, Syed AA, et al. Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomed Pharmacother. 2019;116:108959.

    Article  CAS  PubMed  Google Scholar 

  106. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cook KL, Soto-Pantoja DR, Clarke PA, Cruz MI, Zwart A, Warri A, et al. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Cancer Res. 2016;76(19):5657–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Larbi A, Fortin C, Dupuis G, Berrougui H, Khalil A, Fulop T. Immunomodulatory role of high-density lipoproteins: impact on immunosenescence. Age (Dordr). 2014;36(5):9712.

    Article  CAS  Google Scholar 

  109. Ma X, Li SF, Qin ZS, Ye J, Zhao ZL, Fang HH, et al. Propofol up-regulates expression of ABCA1, ABCG1, and SR-B1 through the PPARgamma/LXRalpha signaling pathway in THP-1 macrophage-derived foam cells. Cardiovasc Pathol. 2015;24(4):230–5.

    Article  CAS  PubMed  Google Scholar 

  110. Han F, Wang G, Li Y, Tian W, Dong Z, Cheng S, et al. Investigation of T-cell immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3) polymorphisms in essential thrombocythaemia (ET). Hematology. 2017;22(6):361–7.

    Article  CAS  PubMed  Google Scholar 

  111. O’Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck MD, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 2014;41(1):75–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692.

    Article  CAS  PubMed  Google Scholar 

  113. Haselbarth L, Ouwens DM, Teichweyde N, Hochrath K, Merches K, Esser C. The small chain fatty acid butyrate antagonizes the TCR-stimulation-induced metabolic shift in murine epidermal gamma delta T cells. EXCLI J. 2020;19:334–50.

    PubMed  PubMed Central  Google Scholar 

  114. Xie Z, Ago Y, Okada N, Tachibana M. Valproic acid attenuates immunosuppressive function of myeloid-derived suppressor cells. J Pharmacol Sci. 2018;137(4):359–65.

    Article  CAS  PubMed  Google Scholar 

  115. Folkl A, Bienzle D. Structure and function of programmed death (PD) molecules. Vet Immunol Immunopathol. 2010;134(1–2):33–8.

    Article  CAS  PubMed  Google Scholar 

  116. Toprak U, Hegedus D, Dogan C, Guney G. A journey into the world of insect lipid metabolism. Arch Insect Biochem Physiol. 2020;104(2):e21682.

    Article  CAS  PubMed  Google Scholar 

  117. Yessoufou A, Ple A, Moutairou K, Hichami A, Khan NA. Docosahexaenoic acid reduces suppressive and migratory functions of CD4+CD25+ regulatory T-cells. J Lipid Res. 2009;50(12):2377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chikuma S, Imboden JB, Bluestone JA. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2003;197(1):129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li X, Wu Y, Zhao J, Wang H, Tan J, Yang M, et al. Distinct cardiac energy metabolism and oxidative stress adaptations between obese and non-obese type 2 diabetes mellitus. Theranostics. 2020;10(6):2675–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lu Y, Zheng Y, Coyaud E, Zhang C, Selvabaskaran A, Yu Y, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science. 2019;366(6464):460–7.

    Article  CAS  PubMed  Google Scholar 

  121. Yang Y, Hsu JM, Sun L, Chan LC, Li CW, Hsu JL, et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res. 2019;29(1):83–6.

    Article  PubMed  Google Scholar 

  122. Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, et al. Author correction: inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019;3(5):414.

    Article  PubMed  Google Scholar 

  123. Han L, Lam EW, Sun Y. Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Mol Cancer. 2019;18(1):59.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Flaherty SE 3rd, Grijalva A, Xu X, Ables E, Nomani A, Ferrante AW Jr. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science. 2019;363(6430):989–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lawler SE, Nowicki MO, Ricklefs FL, Chiocca EA. Immune escape mediated by exosomal PD-L1 in cancer. Adv Biosyst. 2020;4:e2000017.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Yu J, Lin Y, Xiong X, Li K, Yao Z, Dong H, et al. Detection of exosomal PD-L1 RNA in saliva of patients with periodontitis. Front Genet. 2019;10:202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Whiteside TL. Exosomes carrying immunoinhibitory proteins and their role in cancer. Clin Exp Immunol. 2017;189(3):259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gao J, Qiu X, Li X, Fan H, Zhang F, Lv T, et al. Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer. Biochem Biophys Res Commun. 2018;498(3):409–15.

    Article  CAS  PubMed  Google Scholar 

  129. Ferris SP, Kodali VK, Kaufman RJ. Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Dis Model Mech. 2014;7(3):331–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Breitling J, Aebi M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2013;5(8):a013359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Alter G, Ottenhoff THM, Joosten SA. Antibody glycosylation in inflammation, disease and vaccination. Semin Immunol. 2018;39:102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553(7686):91–5.

    Article  CAS  PubMed  Google Scholar 

  134. Serman TM, Gack MU. FBXO38 drives PD-1 to destruction. Trends Immunol. 2019;40(2):81–3.

    Article  CAS  PubMed  Google Scholar 

  135. Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30(6):925–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W, et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature. 2017;549(7670):106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549(7670):101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019;3(4):306–17.

    Article  CAS  PubMed  Google Scholar 

  140. Fujita Y, Tinoco R, Li Y, Senft D, Ronai ZA. Ubiquitin ligases in cancer immunotherapy—balancing antitumor and autoimmunity. Trends Mol Med. 2019;25(5):428–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Imbert C, Montfort A, Fraisse M, Marcheteau E, Gilhodes J, Martin E, et al. Resistance of melanoma to immune checkpoint inhibitors is overcome by targeting the sphingosine kinase-1. Nat Commun. 2020;11(1):437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Strauss L, Mahmoud MAA, Weaver JD, Tijaro-Ovalle NM, Christofides A, Wang Q, et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci Immunol. 2020;5(43):eaay1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang H, Tang Y, Fang Y, Zhang M, Wang H, He Z, et al. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of Shikonin/JQ1. Nano Lett. 2019;19(5):2935–44.

    Article  PubMed  CAS  Google Scholar 

  144. Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 2018;14(8):452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee S, Dong HH. FoxO integration of insulin signaling with glucose and lipid metabolism. J Endocrinol. 2017;233(2):R67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, Q., Zhou, Y., Xia, L., Cao, D. (2021). Lipid Metabolism and Immune Checkpoints. In: Li, Y. (eds) Lipid Metabolism in Tumor Immunity. Advances in Experimental Medicine and Biology, vol 1316. Springer, Singapore. https://doi.org/10.1007/978-981-33-6785-2_12

Download citation

Publish with us

Policies and ethics