Skip to main content

Lipid Metabolism and Tumor Antigen Presentation

  • Chapter
  • First Online:
Lipid Metabolism in Tumor Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1316))

Abstract

Tumors always evade immune surveillance and block T cell activation in a poorly immunogenic and immunosuppressive environment. Cancer cells and immune cells exhibit metabolic reprogramming in the tumor microenvironment (TME), which intimately links immune cell function and edits tumor immunology. In addition to glucose metabolism, amino acid and lipid metabolism also provide the materials for biological processes crucial in cancer biology and pathology. Furthermore, lipid metabolism is synergistically or negatively involved in the interactions between tumors and the microenvironment and contributes to the regulation of immune cells. Antigen processing and presentation as the initiation of adaptive immune response play a critical role in antitumor immunity. Therefore, a relationship exists between antigen-presenting cells and lipid metabolism in TME. This chapter introduces the updated understandings of lipid metabolism of tumor antigen-presenting cells and describes new directions in the manipulation of immune responses for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology. Nat Rev Endocrinol. 2017;13(12):710–30. https://doi.org/10.1038/nrendo.2017.91.

    Article  CAS  PubMed  Google Scholar 

  2. Loftus RM, Finlay DK. Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem. 2016;291(1):1–10. https://doi.org/10.1074/jbc.R115.693903.

    Article  CAS  PubMed  Google Scholar 

  3. De Libero G. Editorial overview: antigen processing. Curr Opin Immunol. 2018;52:iv–v. https://doi.org/10.1016/j.coi.2018.05.016.

    Article  CAS  PubMed  Google Scholar 

  4. Lees JR. Targeting antigen presentation in autoimmunity. Cell Immunol. 2019;339:4–9. https://doi.org/10.1016/j.cellimm.2018.12.006.

    Article  CAS  PubMed  Google Scholar 

  5. Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. Int Rev Cell Mol Biol. 2019;348:69–121. https://doi.org/10.1016/bs.ircmb.2019.07.005.

    Article  PubMed  Google Scholar 

  6. Jensen PE. Recent advances in antigen processing and presentation. Nat Immunol. 2007;8(10):1041–8. https://doi.org/10.1038/ni1516.

    Article  CAS  PubMed  Google Scholar 

  7. van den Elsen PJ. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol. 2011;2:48. https://doi.org/10.3389/fimmu.2011.00048.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burgdorf S, Kurts C. Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol. 2008;20(1):89–95. https://doi.org/10.1016/j.coi.2007.12.002.

    Article  CAS  PubMed  Google Scholar 

  9. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12(8):557–69. https://doi.org/10.1038/nri3254.

    Article  CAS  PubMed  Google Scholar 

  10. Bevan MJ. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med. 1976;143(5):1283–8. https://doi.org/10.1084/jem.143.5.1283.

    Article  CAS  PubMed  Google Scholar 

  11. Bevan MJ. Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming. J Immunol. 1976;117(6):2233–8.

    CAS  PubMed  Google Scholar 

  12. Sanchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Perez-Gracia JL, Sanchez-Arraez A, Sancho D, Melero I. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol. 2017;28(suppl_12):xii44–55. https://doi.org/10.1093/annonc/mdx237.

    Article  CAS  PubMed  Google Scholar 

  13. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95. https://doi.org/10.1038/cr.2016.157.

    Article  CAS  PubMed  Google Scholar 

  14. Moody DB, Cotton RN. Four pathways of CD1 antigen presentation to T cells. Curr Opin Immunol. 2017;46:127–33. https://doi.org/10.1016/j.coi.2017.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity. 2014;40(5):642–56. https://doi.org/10.1016/j.immuni.2014.04.016.

    Article  CAS  PubMed  Google Scholar 

  16. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8. https://doi.org/10.1038/nri3712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2018;9:3176. https://doi.org/10.3389/fimmu.2018.03176.

    Article  CAS  PubMed  Google Scholar 

  18. Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE, Wolf DM, Kaisho T, Bogunovic D, Bhardwaj N, Krummel MF. Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell. 2016;30(2):324–36. https://doi.org/10.1016/j.ccell.2016.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Houston SA, Cerovic V, Thomson C, Brewer J, Mowat AM, Milling S. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 2016;9(2):468–78. https://doi.org/10.1038/mi.2015.77.

    Article  CAS  PubMed  Google Scholar 

  20. Crispe IN. Liver antigen-presenting cells. J Hepatol. 2011;54(2):357–65. https://doi.org/10.1016/j.jhep.2010.10.005.

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Jensen PE. The role of B lymphocytes as antigen-presenting cells. Arch Immunol Ther Exp. 2008;56(2):77–83. https://doi.org/10.1007/s00005-008-0014-5.

    Article  CAS  Google Scholar 

  22. Mehrfeld C, Zenner S, Kornek M, Lukacs-Kornek V. The contribution of non-professional antigen-presenting cells to immunity and tolerance in the liver. Front Immunol. 2018;9:635. https://doi.org/10.3389/fimmu.2018.00635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cerezo-Wallis D, Soengas MS. Understanding tumor-antigen presentation in the new era of cancer immunotherapy. Curr Pharm Des. 2016;22(41):6234–50. https://doi.org/10.2174/1381612822666160826111041.

    Article  CAS  PubMed  Google Scholar 

  24. Schnurr M, Chen Q, Shin A, Chen W, Toy T, Jenderek C, Green S, Miloradovic L, Drane D, Davis ID, Villadangos J, Shortman K, Maraskovsky E, Cebon J. Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood. 2005;105(6):2465–72. https://doi.org/10.1182/blood-2004-08-3105.

    Article  CAS  PubMed  Google Scholar 

  25. Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol. 2017;45:43–51. https://doi.org/10.1016/j.coi.2017.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim R, Emi M, Tanabe K, Arihiro K. Potential functional role of plasmacytoid dendritic cells in cancer immunity. Immunology. 2007;121(2):149–57. https://doi.org/10.1111/j.1365-2567.2007.02579.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bandola-Simon J, Roche PA. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol. 2019;113:31–7. https://doi.org/10.1016/j.molimm.2018.03.025.

    Article  CAS  PubMed  Google Scholar 

  28. Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration. Immunity. 2008;29(3):325–42. https://doi.org/10.1016/j.immuni.2008.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wakim LM, Bevan MJ. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature. 2011;471(7340):629–32. https://doi.org/10.1038/nature09863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dolan BP, Gibbs KD Jr, Ostrand-Rosenberg S. Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+ T cells. J Immunol. 2006;177(9):6018–24. https://doi.org/10.4049/jimmunol.177.9.6018.

    Article  CAS  PubMed  Google Scholar 

  31. Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG. Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res. 2016;22(8):1897–906. https://doi.org/10.1158/1078-0432.ccr-15-1399.

    Article  CAS  PubMed  Google Scholar 

  32. Garrido F, Romero I, Aptsiauri N, Garcia-Lora AM. Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. Int J Cancer. 2016;138(2):271–80. https://doi.org/10.1002/ijc.29375.

    Article  CAS  PubMed  Google Scholar 

  33. Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F, Cabrera T. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics. 2008;60(8):439–47. https://doi.org/10.1007/s00251-008-0303-5.

    Article  CAS  PubMed  Google Scholar 

  34. Seliger B, Maeurer MJ, Ferrone S. Antigen-processing machinery breakdown and tumor growth. Immunol Today. 2000;21(9):455–64. https://doi.org/10.1016/s0167-5699(00)01692-3.

    Article  CAS  PubMed  Google Scholar 

  35. Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ, Frelinger JA, Robinson BW. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol. 2003;170(10):4905–13. https://doi.org/10.4049/jimmunol.170.10.4905.

    Article  CAS  PubMed  Google Scholar 

  36. Sanchez-Paulete AR, Cueto FJ, Martinez-Lopez M, Labiano S, Morales-Kastresana A, Rodriguez-Ruiz ME, Jure-Kunkel M, Azpilikueta A, Aznar MA, Quetglas JI, Sancho D, Melero I. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 2016;6(1):71–9. https://doi.org/10.1158/2159-8290.CD-15-0510.

    Article  CAS  PubMed  Google Scholar 

  37. Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016;37(12):855–65. https://doi.org/10.1016/j.it.2016.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reizis B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity. 2019;50(1):37–50. https://doi.org/10.1016/j.immuni.2018.12.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–77. https://doi.org/10.1038/nrc3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boks MA, Bruijns SCM, Ambrosini M, Kalay H, van Bloois L, Storm G, Gruijl T, van Kooyk Y. In situ delivery of tumor antigen- and adjuvant-loaded liposomes boosts antigen-specific T-cell responses by human dermal dendritic cells. J Invest Dermatol. 2015;135(11):2697–704. https://doi.org/10.1038/jid.2015.226.

    Article  CAS  PubMed  Google Scholar 

  41. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164(6):1233–47. https://doi.org/10.1016/j.cell.2016.01.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faget J, Bendriss-Vermare N, Gobert M, Durand I, Olive D, Biota C, Bachelot T, Treilleux I, Goddard-Leon S, Lavergne E, Chabaud S, Blay JY, Caux C, Menetrier-Caux C. ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells. Cancer Res. 2012;72(23):6130–41. https://doi.org/10.1158/0008-5472.CAN-12-2409.

    Article  CAS  PubMed  Google Scholar 

  43. Bonaccorsi I, Morandi B, Antsiferova O, Costa G, Oliveri D, Conte R, Pezzino G, Vermiglio G, Anastasi GP, Navarra G, Munz C, Di Carlo E, Mingari MC, Ferlazzo G. Membrane transfer from tumor cells overcomes deficient phagocytic ability of plasmacytoid dendritic cells for the acquisition and presentation of tumor antigens. J Immunol. 2014;192(2):824–32. https://doi.org/10.4049/jimmunol.1301039.

    Article  CAS  PubMed  Google Scholar 

  44. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. https://doi.org/10.1038/nri3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dudek AM, Martin S, Garg AD, Agostinis P. Immature, semi-mature, and fully mature dendritic cells: toward a DC-cancer cells Interface that augments anticancer immunity. Front Immunol. 2013;4:438. https://doi.org/10.3389/fimmu.2013.00438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol. 2015;194(7):2985–91. https://doi.org/10.4049/jimmunol.1403134.

    Article  CAS  PubMed  Google Scholar 

  47. Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Sakamoto C, Takahashi H. Inactivation of tumor-specific CD8(+) CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol. 2013;91(9):545–55. https://doi.org/10.1038/icb.2013.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H, Goode EL, Kalli KR, Knutson KL. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol. 2011;186(12):6905–13. https://doi.org/10.4049/jimmunol.1100274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klarquist JS, Janssen EM. Melanoma-infiltrating dendritic cells: limitations and opportunities of mouse models. Onco Targets Ther. 2012;1(9):1584–93. https://doi.org/10.4161/onci.22660.

    Article  Google Scholar 

  50. Karyampudi L, Lamichhane P, Scheid AD, Kalli KR, Shreeder B, Krempski JW, Behrens MD, Knutson KL. Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody. Cancer Res. 2014;74(11):2974–85. https://doi.org/10.1158/0008-5472.CAN-13-2564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X. Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol. 2009;182(10):6207–16. https://doi.org/10.4049/jimmunol.0803926.

    Article  CAS  PubMed  Google Scholar 

  52. Hargadon KM. Tumor-altered dendritic cell function: implications for anti-tumor immunity. Front Immunol. 2013;4:192. https://doi.org/10.3389/fimmu.2013.00192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen W, Liang X, Peterson AJ, Munn DH, Blazar BR. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol. 2008;181(8):5396–404. https://doi.org/10.4049/jimmunol.181.8.5396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344(6186):921–5. https://doi.org/10.1126/science.1252510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. https://doi.org/10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19(6):369–82. https://doi.org/10.1038/s41577-019-0127-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86. https://doi.org/10.1016/j.it.2004.09.015.

    Article  CAS  PubMed  Google Scholar 

  58. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dehne N, Mora J, Namgaladze D, Weigert A, Brune B. Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol. 2017;35:12–9. https://doi.org/10.1016/j.coph.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

  60. Tang X, Mo C, Wang Y, Wei D, Xiao H. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology. 2013;138(2):93–104. https://doi.org/10.1111/imm.12023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12. https://doi.org/10.1158/0008-5472.CAN-05-4005.

    Article  CAS  PubMed  Google Scholar 

  62. Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263. https://doi.org/10.3389/fimmu.2015.00263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ohnishi K, Komohara Y, Saito Y, Miyamoto Y, Watanabe M, Baba H, Takeya M. CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci. 2013;104(9):1237–44. https://doi.org/10.1111/cas.12212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohnishi K, Yamaguchi M, Erdenebaatar C, Saito F, Tashiro H, Katabuchi H, Takeya M, Komohara Y. Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma. Cancer Sci. 2016;107(6):846–52. https://doi.org/10.1111/cas.12929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martinez-Pomares L, Gordon S. CD169+ macrophages at the crossroads of antigen presentation. Trends Immunol. 2012;33(2):66–70. https://doi.org/10.1016/j.it.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  66. Asano K, Nabeyama A, Miyake Y, Qiu CH, Kurita A, Tomura M, Kanagawa O, Fujii S, Tanaka M. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity. 2011;34(1):85–95. https://doi.org/10.1016/j.immuni.2010.12.011.

    Article  CAS  PubMed  Google Scholar 

  67. Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 2014;123(2):208–16. https://doi.org/10.1182/blood-2013-03-489732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pucci F, Garris C, Lai CP, Newton A, Pfirschke C, Engblom C, Alvarez D, Sprachman M, Evavold C, Magnuson A, von Andrian UH, Glatz K, Breakefield XO, Mempel TR, Weissleder R, Pittet MJ. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science. 2016;352(6282):242–6. https://doi.org/10.1126/science.aaf1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hicklin DJ, Marincola FM, Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999;5(4):178–86. https://doi.org/10.1016/s1357-4310(99)01451-3.

    Article  CAS  PubMed  Google Scholar 

  70. Bijen CB, Bantema-Joppe EJ, de Jong RA, Leffers N, Mourits MJ, Eggink HF, van der Zee AG, Hollema H, de Bock GH, Nijman HW. The prognostic role of classical and nonclassical MHC class I expression in endometrial cancer. Int J Cancer. 2010;126(6):1417–27. https://doi.org/10.1002/ijc.24852.

    Article  CAS  PubMed  Google Scholar 

  71. Bubenik J. MHC class I down regulation, tumour escape from immune surveillance and design of therapeutic strategies. Folia Biol. 2005;51(1):1–2.

    CAS  Google Scholar 

  72. Madjd Z, Spendlove I, Pinder SE, Ellis IO, Durrant LG. Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer. 2005;117(2):248–55. https://doi.org/10.1002/ijc.21163.

    Article  CAS  PubMed  Google Scholar 

  73. Brady MS, Eckels DD, Ree SY, Schultheiss KE, Lee JS. MHC class II-mediated antigen presentation by melanoma cells. J Immunother Emphasis Tumor Immunol. 1996;19(6):387–97. https://doi.org/10.1097/00002371-199611000-00001.

    Article  CAS  PubMed  Google Scholar 

  74. Bernsen MR, Hakansson L, Gustafsson B, Krysander L, Rettrup B, Ruiter D, Hakansson A. On the biological relevance of MHC class II and B7 expression by tumour cells in melanoma metastases. Br J Cancer. 2003;88(3):424–31. https://doi.org/10.1038/sj.bjc.6600703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, Lehr HA, Hengstler JG, Kolbl H, Gehrmann M. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008;68(13):5405–13. https://doi.org/10.1158/0008-5472.CAN-07-5206.

    Article  CAS  PubMed  Google Scholar 

  76. Tureci O, Mack U, Luxemburger U, Heinen H, Krummenauer F, Sester M, Sester U, Sybrecht GW, Sahin U. Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1. Cancer Lett. 2006;236(1):64–71. https://doi.org/10.1016/j.canlet.2005.05.008.

    Article  CAS  PubMed  Google Scholar 

  77. Lechpammer M, Lukac J, Lechpammer S, Kovacevic D, Loda M, Kusic Z. Humoral immune response to p53 correlates with clinical course in colorectal cancer patients during adjuvant chemotherapy. Int J Color Dis. 2004;19(2):114–20. https://doi.org/10.1007/s00384-003-0553-5.

    Article  Google Scholar 

  78. Berg M, Wingender G, Djandji D, Hegenbarth S, Momburg F, Hammerling G, Limmer A, Knolle P. Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8+ T cell tolerance. Eur J Immunol. 2006;36(11):2960–70. https://doi.org/10.1002/eji.200636033.

    Article  CAS  PubMed  Google Scholar 

  79. Li X, Shao C, Shi Y, Han W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol. 2018;11(1):31. https://doi.org/10.1186/s13045-018-0578-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T, Greenfield EA, Liang SC, Sharpe AH, Lichtman AH, Freeman GJ. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol. 2003;33(11):3117–26. https://doi.org/10.1002/eji.200324270.

    Article  CAS  PubMed  Google Scholar 

  81. Eppihimer MJ, Gunn J, Freeman GJ, Greenfield EA, Chernova T, Erickson J, Leonard JP. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation. 2002;9(2):133–45. https://doi.org/10.1038/sj/mn/7800123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 2012;1(3):191–9. https://doi.org/10.1016/j.celrep.2012.01.005.

    Article  CAS  PubMed  Google Scholar 

  83. Nomura DK, Cravatt BF. Lipid metabolism in cancer. Biochim Biophys Acta. 2013;1831(10):1497–8. https://doi.org/10.1016/j.bbalip.2013.08.001.

    Article  CAS  PubMed  Google Scholar 

  84. Nakagawa H, Hayata Y, Kawamura S, Yamada T, Fujiwara N, Koike K. Lipid metabolic reprogramming in hepatocellular carcinoma. Cancers (Basel). 2018;10(11):447. https://doi.org/10.3390/cancers10110447.

    Article  CAS  Google Scholar 

  85. Hu B, Lin JZ, Yang XB, Sang XT. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: a review. Cell Prolif. 2020;53(3):e12772. https://doi.org/10.1111/cpr.12772.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hao Y, Li D, Xu Y, Ouyang J, Wang Y, Zhang Y, Li B, Xie L, Qin G. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics. 2019;20(Suppl 7):195. https://doi.org/10.1186/s12859-019-2734-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li R, Fang F, Jiang M, Wang C, Ma J, Kang W, Zhang Q, Miao Y, Wang D, Guo Y, Zhang L, Guo Y, Zhao H, Yang TZ, Xiao W. STAT3 and NF-kappaB are simultaneously suppressed in dendritic cells in lung cancer. Sci Rep. 2017;7:45395. https://doi.org/10.1038/srep45395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, Knight SC, Padhya T, McCaffrey TV, McCaffrey JC, Antonia S, Fishman M, Ferris RL, Kagan VE, Gabrilovich DI. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 2010;16(8):880–6. https://doi.org/10.1038/nm.2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gao F, Liu C, Guo J, Sun W, Xian L, Bai D, Liu H, Cheng Y, Li B, Cui J, Zhang C, Cai J. Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer. Sci Rep. 2015;5:9613. https://doi.org/10.1038/srep09613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Arai R, Soda S, Okutomi T, Morita H, Ohmi F, Funakoshi T, Takemasa A, Ishii Y. Lipid accumulation in peripheral blood dendritic cells and anticancer immunity in patients with lung cancer. J Immunol Res. 2018;2018:5708239. https://doi.org/10.1155/2018/5708239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gardner JK, Mamotte CD, Patel P, Yeoh TL, Jackaman C, Nelson DJ. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS One. 2015;10(4):e0123563. https://doi.org/10.1371/journal.pone.0123563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lerret NM, Rogozinska M, Jaramillo A, Marzo AL. Adoptive transfer of Mammaglobin-A epitope specific CD8 T cells combined with a single low dose of total body irradiation eradicates breast tumors. PLoS One. 2012;7(7):e41240. https://doi.org/10.1371/journal.pone.0041240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zapata-Gonzalez F, Rueda F, Petriz J, Domingo P, Villarroya F, Diaz-Delfin J, de Madariaga MA, Domingo JC. Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPAR(gamma):RXR heterodimers: comparison with other polyunsaturated fatty acids. J Leukoc Biol. 2008;84(4):1172–82. https://doi.org/10.1189/jlb.1007688.

    Article  CAS  PubMed  Google Scholar 

  94. Szatmari I, Torocsik D, Agostini M, Nagy T, Gurnell M, Barta E, Chatterjee K, Nagy L. PPARgamma regulates the function of human dendritic cells primarily by altering lipid metabolism. Blood. 2007;110(9):3271–80. https://doi.org/10.1182/blood-2007-06-096222.

    Article  CAS  PubMed  Google Scholar 

  95. Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJ, Artyomov MN, Jones RG, Pearce EL, Pearce EJ. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15(4):323–32. https://doi.org/10.1038/ni.2833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. den Brok MH, Bull C, Wassink M, de Graaf AM, Wagenaars JA, Minderman M, Thakur M, Amigorena S, Rijke EO, Schrier CC, Adema GJ. Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation. Nat Commun. 2016;7:13324. https://doi.org/10.1038/ncomms13324.

    Article  CAS  Google Scholar 

  97. Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, Rodriguez PC, Ochoa AC. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 2015;3(11):1236–47. https://doi.org/10.1158/2326-6066.CIR-15-0036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ramakrishnan R, Tyurin VA, Veglia F, Condamine T, Amoscato A, Mohammadyani D, Johnson JJ, Zhang LM, Klein-Seetharaman J, Celis E, Kagan VE, Gabrilovich DI. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192(6):2920–31. https://doi.org/10.4049/jimmunol.1302801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, Ng KT, Forbes SJ, Guan XY, Poon RT, Fan ST, Man K. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 2015;62(3):607–16. https://doi.org/10.1016/j.jhep.2014.10.029.

    Article  CAS  PubMed  Google Scholar 

  100. Huang SC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O’Neill CM, Yan C, Du H, Abumrad NA, Urban JF Jr, Artyomov MN, Pearce EL, Pearce EJ. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;15(9):846–55. https://doi.org/10.1038/ni.2956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, Pearce EJ. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling Axis is essential for macrophage alternative activation. Immunity. 2016;45(4):817–30. https://doi.org/10.1016/j.immuni.2016.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship. Cancer Lett. 2018;413:102–9. https://doi.org/10.1016/j.canlet.2017.10.037.

    Article  CAS  PubMed  Google Scholar 

  103. Xiang W, Shi R, Kang X, Zhang X, Chen P, Zhang L, Hou A, Wang R, Zhao Y, Zhao K, Liu Y, Ma Y, Luo H, Shang S, Zhang J, He F, Yu S, Gan L, Shi C, Li Y, Yang W, Liang H, Miao H. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun. 2018;9(1):2574. https://doi.org/10.1038/s41467-018-04999-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu XH, Ren XH, Liang XH, Tang YL. Roles of fatty acid metabolism in tumourigenesis: beyond providing nutrition (review). Mol Med Rep. 2018;18(6):5307–16. https://doi.org/10.3892/mmr.2018.9577.

    Article  CAS  PubMed  Google Scholar 

  105. Traversari C, Sozzani S, Steffensen KR, Russo V. LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. Eur J Immunol. 2014;44(7):1896–903. https://doi.org/10.1002/eji.201344292.

    Article  CAS  PubMed  Google Scholar 

  106. Park H, Lee J, Park T, Lee S, Yi W. Enhancement of photo-current conversion efficiency in a CdS/CdSe quantum-dot-sensitized solar cell incorporated with single-walled carbon nanotubes. J Nanosci Nanotechnol. 2015;15(2):1614–7. https://doi.org/10.1166/jnn.2015.9319.

    Article  CAS  PubMed  Google Scholar 

  107. Niu Z, Shi Q, Zhang W, Shu Y, Yang N, Chen B, Wang Q, Zhao X, Chen J, Cheng N, Feng X, Hua Z, Ji J, Shen P. Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs. Nat Commun. 2017;8(1):766. https://doi.org/10.1038/s41467-017-00523-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Dabritz JHM, Gottlieb E, Latorre I, Corr SC, McManus G, Ryan D, Jacobs HT, Szibor M, Xavier RJ, Braun T, Frezza C, Murphy MP, O’Neill LA. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167(2):457–470.e413. https://doi.org/10.1016/j.cell.2016.08.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mills EL, O’Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol. 2016;46(1):13–21. https://doi.org/10.1002/eji.201445427.

    Article  CAS  PubMed  Google Scholar 

  110. Kosaraju R, Guesdon W, Crouch MJ, Teague HL, Sullivan EM, Karlsson EA, Schultz-Cherry S, Gowdy K, Bridges LC, Reese LR, Neufer PD, Armstrong M, Reisdorph N, Milner JJ, Beck M, Shaikh SR. B cell activity is impaired in human and mouse obesity and is responsive to an essential fatty acid upon murine influenza infection. J Immunol. 2017;198(12):4738–52. https://doi.org/10.4049/jimmunol.1601031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kennedy DE, Witte PL, Knight KL. Bone marrow fat and the decline of B lymphopoiesis in rabbits. Dev Comp Immunol. 2016;58:30–9. https://doi.org/10.1016/j.dci.2015.11.003.

    Article  PubMed  Google Scholar 

  112. Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O, Orandle M, Mayer L, Macpherson AJ, McCoy KD, Fraser-Liggett C, Matzinger P. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. 2011;17(12):1585–93. https://doi.org/10.1038/nm.2505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harjes U, Kalucka J, Carmeliet P. Targeting fatty acid metabolism in cancer and endothelial cells. Crit Rev Oncol Hematol. 2016;97:15–21. https://doi.org/10.1016/j.critrevonc.2015.10.011.

    Article  PubMed  Google Scholar 

  114. Rohlenova K, Veys K, Miranda-Santos I, De Bock K, Carmeliet P. Endothelial cell metabolism in health and disease. Trends Cell Biol. 2018;28(3):224–36. https://doi.org/10.1016/j.tcb.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaxi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qin, H., Chen, Y. (2021). Lipid Metabolism and Tumor Antigen Presentation. In: Li, Y. (eds) Lipid Metabolism in Tumor Immunity. Advances in Experimental Medicine and Biology, vol 1316. Springer, Singapore. https://doi.org/10.1007/978-981-33-6785-2_11

Download citation

Publish with us

Policies and ethics