Skip to main content

Mass Spectrometry-based Metabolomics in Translational Research

  • Chapter
  • First Online:
Advanced Imaging and Bio Techniques for Convergence Science

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1310))

Abstract

Metabolomics is the systematic study of metabolite profiles of complex biological systems, and involves the systematic identification and quantification of metabolites. Metabolism is integrated with all biochemical reactions in biological systems; thus metabolite profiles provide collective information on biochemical processes induced by genetic or environmental perturbations. Transcriptomes or proteomes may not be functionally active and not always reflect phenotypic variations. The metabolome, however, consists of the biomolecules closest to the phenotype of living organisms, and is often called the molecular phenotype of biological systems. Thus, metabolome alterations can easily result in disease states, providing important clues to understand pathophysiological mechanisms contributing to various biomedical symptoms. The metabolome and metabolomics have been emphasized in translational research related to biomarker discovery, drug target discovery, drug responses, and disease mechanisms. This review describes the basic concepts, workflows, and applications of mass spectrometry-based metabolomics in translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amal AL, Funka K, Skapars R, Sivins A, Ancans G, Liepniece-Karele I, Kikuste I, Lasina I, Haick H (2015) Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut 65:1–8

    Google Scholar 

  • Anand S, Young S, Esplin MS, Peaden B, Tolley HD, Porter TF et al (2016) Detection and confirmation of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry. J Lipid Res 57(4):687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antolin EM, Delange DM, Canavaciolo VG (2008) Evaluation of five methods for derivatization and GC determination of a mixture of very long chain fatty acids (C24:0-C36:0). J Pharm Biomed Anal 46(1):194–199

    Article  CAS  PubMed  Google Scholar 

  • Aubin MC, Lajoie C, Clement R, Gosselin H, Calderone A, Perrault LP (2008) Female rats fed a high-fat diet were associated with vascular dysfunction and cardiac fibrosis in the absence of overt obesity and hyperlipidemia: therapeutic potential of resveratrol. J Pharmacol Exp Ther 325(3):961–968

    Article  CAS  PubMed  Google Scholar 

  • Bergholt MS, Serio A, McKenzie JS, Boyd A, Soares RF, Tillner J et al (2018) Correlated Heterospectral Lipidomics for biomolecular profiling of Remyelination in multiple sclerosis. ACS Cent Sci 4(1):39–51

    Article  CAS  PubMed  Google Scholar 

  • Bhargava P, Fitzgerald KC, Calabresi PA, Mowry EM (2017) Metabolic alterations in multiple sclerosis and the impact of vitamin D supplementation. JCI Insight 2(19):e95302

    Article  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM et al (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24(2):168–200

    Article  CAS  PubMed  Google Scholar 

  • Bondia-Pons I, Nordlund E, Mattila I, Katina K, Aura AM, Kolehmainen M et al (2011) Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread. Nutr J 10:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boskey AL, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc 38(1-2):107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudah S, Olivier MF, Aros-Calt S, Oliveira L, Fenaille F, Tabet JC et al (2014) Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J Chromatogr 966:34–47

    CAS  Google Scholar 

  • Bowen BP, Northen TR (2010) Dealing with the unknown: metabolomics and metabolite atlases. J Am Soc Mass Spectrom 21(9):1471–1476

    Article  CAS  PubMed  Google Scholar 

  • Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR et al (2018) Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14(6):72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broza YY, Kremer R, Tisch U, Gevorkyan A, Shiban A, Best LA et al (2013) A nanomaterial-based breath test for short-term follow-up after lung tumor resection. Nanomedicine 9(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Capuano R, Santonico M, Pennazza G, Ghezzi S, Martinelli E, Roscioni C et al (2015) The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs. Sci Rep 5:16491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzola MS, Capuano R, Bergamini A, Martinelli E, Calzetta L, Rogliani P, Ciaprini C, Ora J, Paolesse R, Di Natale C, D’Amico A (2015) Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Research and Practice 10:1

    Google Scholar 

  • Ceglarek U, Leichtle A, Brugel M, Kortz L, Brauer R, Bresler K et al (2009) Challenges and developments in tandem mass spectrometry based clinical metabolomics. Mol Cell Endocrinol 301(1–2):266–271

    Article  CAS  PubMed  Google Scholar 

  • Cha JH, Bae SH, Kim HL, Park NR, Choi ES, Jung ES et al (2013) Branched-chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis. PLoS One 8(11):e77899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JC, Kioh DY, Yap GC, Lee BW, Chan EC (2017) A novel LCMSMS method for quantitative measurement of short-chain fatty acids in human stool derivatized with (12)C- and (13)C-labelled aniline. J Pharm Biomed Anal 138:43–53

    Article  CAS  PubMed  Google Scholar 

  • Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–WW94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claude E, Jones EA, Pringle SD (2017) DESI mass spectrometry imaging (MSI). Methods Mol Biol 1618:65–75

    Article  CAS  PubMed  Google Scholar 

  • Cooper SD, Kyriazakis I, Nolan JV (1995) Diet selection in sheep: the role of the rumen environment in the selection of a diet from two feeds that differ in their energy density. Br J Nutr 74(1):39–54

    Article  CAS  PubMed  Google Scholar 

  • Crow YJ, Wakeland EK (2012) Autoimmunity. Curr Opin Immunol 24(6):649–650

    Article  CAS  PubMed  Google Scholar 

  • Das S, Pal S, Mitra M (2016) Significance of exhaled breath test in clinical diagnosis: a special focus on the detection of diabetes mellitus. J Med Biol Eng 36(5):605–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Defernez M, Colquhoun IJ (2003) Factors affecting the robustness of metabolite fingerprinting using 1H NMR spectra. Phytochemistry 62(6):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Deleris G, Petibois C (2003) Applications of FT-IR spectrometry to plasma contents. Vib Spectrosc 32:129–136

    Article  CAS  Google Scholar 

  • Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15(8):511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083

    Article  CAS  PubMed  Google Scholar 

  • Emwas A-HM (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol 1227:161–193

    Article  CAS  Google Scholar 

  • Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81(16):6656–6667

    Article  CAS  PubMed  Google Scholar 

  • Fendt SM, Buescher JM, Rudroff F, Picotti P, Zamboni N, Sauer U (2010) Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Mol Syst Biol 6:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  PubMed  Google Scholar 

  • Fessenden M (2016) Metabolomics: small molecules, single cells. Nature 540(7631):153–155

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2016) Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol 114:30–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsberg EM, Huan T, Rinehart D, Benton HP, Warth B, Hilmers B et al (2018) Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS online. Nat Protoc 13(4):633–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T (2006) Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br J Nutr 95(5):916–924

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M et al (2009a) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Pujos-Guillot E, Martin JF, Galan P, Juste C, Jia W et al (2009b) Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization. Anal Biochem 393(2):163–175

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Barbas C (2011) Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Methods Mol Biol 708:191–204

    Article  CAS  PubMed  Google Scholar 

  • Gathungu RM, Bird SS, Sheldon DP, Kautz R, Vouros P, Matson WR et al (2014) Identification of metabolites from liquid chromatography-coulometric array detection profiling: gas chromatography-mass spectrometry and refractionation provide essential information orthogonal to LC-MS/microNMR. Anal Biochem 454:23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gieger C, Geistlinger L, Altmaier E, Hrabe de Angelis M, Kronenberg F, Meitinger T et al (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4(11):e1000282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4(7):551–561

    Article  CAS  PubMed  Google Scholar 

  • Guilbault C, Wojewodka G, Saeed Z, Hajduch M, Matouk E, De Sanctis JB et al (2009) Cystic fibrosis fatty acid imbalance is linked to ceramide deficiency and corrected by fenretinide. Am J Respir Cell Mol Biol 41(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Han J, Tschernutter V, Yang J, Eckle T, Borchers CH (2013) Analysis of selected sugars and sugar phosphates in mouse heart tissue by reductive amination and liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 85(12):5965–5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Lin K, Sequeira C, Borchers CH (2015) An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 854:86–94

    Article  CAS  PubMed  Google Scholar 

  • Higashi N, Taniguchi M, Mita H, Osame M, Akiyama K (2002) A comparative study of eicosanoid concentrations in sputum and urine in patients with aspirin-intolerant asthma. Clin Exp Allergy 32(10):1484–1490

    Article  CAS  PubMed  Google Scholar 

  • Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T et al (2011) Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 71(9):3236–3245

    Article  CAS  PubMed  Google Scholar 

  • Ho CS, Lam CW, Chan MH, Cheung RC, Law LK, Lit LC et al (2003) Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev 24(1):3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SK, Peters-Golden M (2008) Eicosanoid lipid mediators in fibrotic lung diseases: ready for prime time? Chest 133(6):1442–1450

    Article  CAS  PubMed  Google Scholar 

  • Huda-Faujan N, Abdulamir AS, Fatimah AB, Anas OM, Shuhaimi M, Yazid AM et al (2010) The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J 4:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6084):1040–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasinghe NS, Dias DA (2013) A robust GC-MS method for the quantitation of fatty acids in biological systems. Methods Mol Biol 1055:39–56

    Article  CAS  PubMed  Google Scholar 

  • Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nature Reviews 17(7):451–459

    Article  CAS  PubMed  Google Scholar 

  • Karamanou M, Protogerou A, Tsoucalas G, Androutsos G, Poulakou-Rebelakou E (2016) Milestones in the history of diabetes mellitus: the main contributors. World J Diabetes 7(1):1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158(1-2):318–328

    Article  CAS  PubMed  Google Scholar 

  • Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636

    Article  CAS  PubMed  Google Scholar 

  • Keyfi F, Varasteh A (2016) Development and validation of a GC-FID method for diagnosis of Methylmalonic Acidemia. Rep Biochem Mol Biol 4(2):104–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Aronov P, Zakharkin SO, Anderson D, Perroud B, Thompson IM et al (2009) Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol Cell Proteomics 8(3):558–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kim N, Koh EH, Yoo HJ (2012) Identification of ethanolamine plasmalogens from complex lipid mixtures by MS/MS and Ag adduction. Anal Sci 28(12):1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Back SH, Koh JM, Yoo HJ (2014) Quantitative determination of major platelet activating factors from human plasma. Anal Bioanal Chem 406(13):3111–3118

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Rhee JK, Yoo HJ, Lee HJ, Lee EJ, Lee JW et al (2015) Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer. Cancer Lett 357(2):488–497

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Song HE, Kim SJ, Woo DC, Chang S, Choi WG et al (2017) Quantitative structural characterization of phosphatidylinositol phosphates from biological samples. J Lipid Res 58(2):469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knittelfelder OL, Weberhofer BP, Eichmann TO, Kohlwein SD, Rechberger GN (2014) A versatile ultra-high performance LC-MS method for lipid profiling. J Chromatogr 951–952:119–128

    Google Scholar 

  • Kvitvang HF, Andreassen T, Adam T, Villas-Boas SG, Bruheim P (2011) Highly sensitive GC/MS/MS method for quantitation of amino and nonamino organic acids. Anal Chem 83(7):2705–2711

    Article  CAS  PubMed  Google Scholar 

  • Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, Nair KS (2010) Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One 5(5):e10538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larstad MA, Toren K, Bake B, Olin AC (2007) Determination of ethane, pentane and isoprene in exhaled air--effects of breath-holding, flow rate and purified air. Acta Physiol (Oxf) 189(1):87–98

    Article  CAS  Google Scholar 

  • Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18(7):816–827

    Article  CAS  PubMed  Google Scholar 

  • Lebovitz HE (1995) Diabetic ketoacidosis. Lancet 345(8952):767–772

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levick SP, Loch DC, Taylor SM, Janicki JS (2007) Arachidonic acid metabolism as a potential mediator of cardiac fibrosis associated with inflammation. J Immunol 178(2):641–646

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zheng S, You H, Liu X, Lin M, Yang L et al (2011) Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J Hepatol 54(6):1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhao J, Zhao Y, Lu X, Zhou Z, Zhao C et al (2016) Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Sci Rep 6:37976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Liu J, LeBlanc Y, Covey T, Ptak AC, Brenna JT et al (2007) Electron transfer dissociation of doubly sodiated glycerophosphocholine lipids. J Am Soc Mass Spectrom 18(10):1783–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CK, Bilgin A, Lovejoy DB, Tan V, Bustamante S, Taylor BV et al (2017) Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci Rep 7:41473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yoo HJ, Hakansson K (2008) Characterization of phosphate-containing metabolites by calcium adduction and electron capture dissociation. J Am Soc Mass Spectrom 19(6):799–808

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Bennett BD, Rabinowitz JD (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr 871(2):236–242

    CAS  Google Scholar 

  • Maeda S (1982) Pathology of experimental radiation pancarditis. II. Correlation between ultrastructural changes of the myocardial mitochondria and succinic dehydrogenase activity in rabbit heart receiving a single dose of X-ray irradiation. Acta Pathol Jpn 32(2):199–218

    CAS  PubMed  Google Scholar 

  • Mark TDD, Dunn GH (2013) Electron impact ionization. Springer, Cham

    Google Scholar 

  • Matsuda F (2016) Technical challenges in mass spectrometry-based metabolomics. Mass Spectrom (Tokyo) 5(2):S0052

    Article  Google Scholar 

  • Metz TO, Zhang Q, Page JS, Shen Y, Callister SJ, Jacobs JM et al (2007) The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery. Biomark Med 1(1):159–185

    Article  CAS  PubMed  Google Scholar 

  • Miekisch W, Schubert JK, Noeldge-Schomburg GF (2004) Diagnostic potential of breath analysis--focus on volatile organic compounds. Clin Chim Acta 347(1-2):25–39

    Article  CAS  PubMed  Google Scholar 

  • Moustafa T, Fickert P, Magnes C, Guelly C, Thueringer A, Frank S et al (2012) Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury. Gastroenterology 142(1):140-51–140e12

    Article  CAS  Google Scholar 

  • Murray KK, Boyd RK, Eberlin MN, Langley GJ, Li L, Naito Y (2013) Definitions of terms relating to mass spectrometry (IUPACRecommendations 2013). Pure Appl Chem 85(5):1515–1609

    Article  CAS  Google Scholar 

  • Nardi-Agmon I, Peled N (2017) Exhaled breath analysis for the early detection of lung cancer: recent developments and future prospects. Lung Cancer (Auckl) 8:31–38

    CAS  Google Scholar 

  • Neary R, Watson CJ, Baugh JA (2015) Epigenetics and the overhealing wound: the role of DNA methylation in fibrosis. Fibrogenesis Tissue Repair 8:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9(4):311–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson JK, Lindon JC (2008) Systems biology: Metabonomics. Nature 455(7216):1054–1056

    Article  CAS  PubMed  Google Scholar 

  • Ongay S, Hermans J, Bruins AP, Nieuwendijk AM, Overkleeft H, Bischoff R (2013) Electron transfer and collision induced dissociation of non-derivatized and derivatized desmosine and isodesmosine. J Am Soc Mass Spectrom 24(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Osborn MP, Park Y, Parks MB, Burgess LG, Uppal K, Lee K et al (2013) Metabolome-wide association study of neovascular age-related macular degeneration. PLoS One 8(8):e72737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadimitropoulos MP, Vasilopoulou CG, Maga-Nteve C, Klapa MI (2018) Untargeted GC-MS metabolomics. Methods Mol Biol 1738:133–147

    Article  CAS  PubMed  Google Scholar 

  • Paredi P, Kharitonov SA, Barnes PJ (2000a) Elevation of exhaled ethane concentration in asthma. Am J Respir Crit Care Med 162(4 Pt 1):1450–1454

    Article  CAS  PubMed  Google Scholar 

  • Paredi P, Kharitonov SA, Leak D, Shah PL, Cramer D, Hodson ME et al (2000b) Exhaled ethane is elevated in cystic fibrosis and correlates with carbon monoxide levels and airway obstruction. Am J Respir Crit Care Med 161(4 Pt 1):1247–1251

    Article  CAS  PubMed  Google Scholar 

  • Paredi P, Kharitonov SA, Leak D, Ward S, Cramer D, Barnes PJ (2000c) Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162(2 Pt 1):369–373

    Article  CAS  PubMed  Google Scholar 

  • Pavord ID, Ward R, Woltmann G, Wardlaw AJ, Sheller JR, Dworski R (1999) Induced sputum eicosanoid concentrations in asthma. Am J Respir Crit Care Med 160(6):1905–1909

    Article  CAS  PubMed  Google Scholar 

  • Peled N, Hakim M, Bunn PA Jr, Miller YE, Kennedy TC, Mattei J et al (2012) Non-invasive breath analysis of pulmonary nodules. J Thorac Oncol 7(10):1528–1533

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez ER, Knapp JA, Horn CK, Stillman SL, Evans JE, Arfsten DP (2016) Comparison of LC-MS-MS and GC-MS analysis of benzodiazepine compounds included in the drug demand reduction urinalysis program. J Anal Toxicol 40(3):201–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petras D, Jarmusch AK, Dorrestein PC (2017) From single cells to our planet-recent advances in using mass spectrometry for spatially resolved metabolomics. Curr Opin Chem Biol 36:24–31

    Article  CAS  PubMed  Google Scholar 

  • Phillips M, Bauer TL, Cataneo RN, Lebauer C, Mundada M, Pass HI et al (2015) Blinded validation of breath biomarkers of lung Cancer, a potential ancillary to chest CT screening. PLoS One 10(12):e0142484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pitt JJ, Eggington M, Kahler SG (2002) Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem 48(11):1970–1980

    Article  CAS  PubMed  Google Scholar 

  • Psathakis K, Mermigkis D, Papatheodorou G, Loukides S, Panagou P, Polychronopoulos V et al (2006) Exhaled markers of oxidative stress in idiopathic pulmonary fibrosis. Eur J Clin Investig 36(5):362–367

    Article  CAS  Google Scholar 

  • Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S et al (2011) The human serum metabolome. PLoS One 6(2):e16957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Su M, Liu Y, Chen M, Gu J, Zhang J et al (2007) Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Anal Chim Acta 583(2):277–283

    Article  CAS  PubMed  Google Scholar 

  • Quehenberger O, Dennis EA (2011) The human plasma lipidome. N Engl J Med 365(19):1812–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51(11):3299–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30(1):276–291

    Article  CAS  PubMed  Google Scholar 

  • Ramautar R, Somsen GW, de Jong GJ (2017) CE-MS for metabolomics: developments and applications in the period 2014-2016. Electrophoresis 38(1):190–202

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Shao Y, Zhao X, Hong CS, Wang F, Lu X et al (2016) Integration of metabolomics and Transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol Cell Proteomics 15(1):154–163

    Article  CAS  PubMed  Google Scholar 

  • Richins RD, Rodriguez-Uribe L, Lowe K, Ferral R, O’Connell MA (2018) Accumulation of bioactive metabolites in cultivated medical cannabis. PLoS One 13(7):e0201119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts LDS, L A, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 98(1):30–32

    Article  Google Scholar 

  • Ross BM, Maxwell R, Glen I (2011) Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder are unrelated to erythrocyte omega-3 fatty acid abundance. Prog Neuro-Psychopharmacol Biol Psychiatry 35(2):446–453

    Article  CAS  Google Scholar 

  • Sanak M, Gielicz A, Bochenek G, Kaszuba M, Nizankowska-Mogilnicka E, Szczeklik A (2011) Targeted eicosanoid lipidomics of exhaled breath condensate provide a distinct pattern in the aspirin-intolerant asthma phenotype. J Allergy Clin Immunol 127(5):1141–7 e2

    Article  CAS  PubMed  Google Scholar 

  • Sarbach C, Stevens P, Whiting J, Puget P, Humbert M, Cohen-Kaminsky S et al (2013) Evidence of endogenous volatile organic compounds as biomarkers of diseases in alveolar breath. Ann Pharm Fr 71(4):203–215

    Article  CAS  PubMed  Google Scholar 

  • Sas KM, Karnovsky A, Michailidis G, Pennathur S (2015) Metabolomics and diabetes: analytical and computational approaches. Diabetes 64(3):718–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shehada N, Cancilla JC, Torrecilla JS, Pariente ES, Bronstrup G, Christiansen S et al (2016) Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 10(7):7047–7057

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787

    Article  CAS  PubMed  Google Scholar 

  • Smith R, Ventura D, Prince JT (2015) LC-MS alignment in theory and practice: a comprehensive algorithmic review. Brief Bioinform 16(1):104–117

    Article  CAS  PubMed  Google Scholar 

  • Smkmrmstt M (2012) Bioinformatics tools for mass spectroscopy-based Metabolomic data processing and analysis. Curr Bioinforma 7(1):96–108

    Article  Google Scholar 

  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231):910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strassburg K, Huijbrechts AM, Kortekaas KA, Lindeman JH, Pedersen TL, Dane A et al (2012) Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal Bioanal Chem 404(5):1413–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B et al (2011a) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477(7362):54–60

    Article  CAS  PubMed  Google Scholar 

  • Suhre K, Wallaschofski H, Raffler J, Friedrich N, Haring R, Michael K et al (2011b) A genome-wide association study of metabolic traits in human urine. Nat Genet 43(6):565–569

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Li T, Song X, Huang L, Zang Q, Xu J et al (2019) Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc Natl Acad Sci U S A 116(1):52–57

    Article  CAS  PubMed  Google Scholar 

  • Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Liu Y, Wang Y, Qiu Y, Lin J, Zhao A et al (2008) GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia. Anal Bioanal Chem 391(8):2881–2889

    Article  CAS  PubMed  Google Scholar 

  • Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14(4):382–391

    Article  PubMed  CAS  Google Scholar 

  • Theodoridis H, Wilson I (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC Trends Anal Chem 27:251–260

    Article  CAS  Google Scholar 

  • Theodoridis GA, Gika HG, Want EJ, Wilson ID (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16

    Article  CAS  PubMed  Google Scholar 

  • Tsai TH, Tadesse MG, Wang Y, Ressom HW (2013a) Profile-based LC-MS data alignment--a Bayesian approach. IEEE/ACM Trans Comput Biol Bioinform 10(2):494–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai TH, Tadesse MG, Di Poto C, Pannell LK, Mechref Y, Wang Y et al (2013b) Multi-profile Bayesian alignment model for LC-MS data analysis with integration of internal standards. Bioinformatics 29(21):2774–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahamaa H, Koskinen VR, Hosia W, Moulder R, Nevalainen OS, Lahesmaa R et al (2011) PolyAlign: a versatile LC-MS data alignment tool for landmark-selected and -automated use. Int J Proteomics 2011:450290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Laarhoven A, Dian S, Aguirre-Gamboa R, Avila-Pacheco J, Ricano-Ponce I, Ruesen C et al (2018) Cerebral tryptophan metabolism and outcome of tuberculous meningitis: an observational cohort study. Lancet Infect Dis 18(5):526–535

    Article  PubMed  Google Scholar 

  • Vandenbogaert M, Li-Thiao-Te S, Kaltenbach HM, Zhang R, Aittokallio T, Schwikowski B (2008) Alignment of LC-MS images, with applications to biomarker discovery and protein identification. Proteomics 8(4):650–672

    Article  CAS  PubMed  Google Scholar 

  • Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10(9):671–684

    Article  CAS  PubMed  Google Scholar 

  • Vaniya A, Fiehn O (2015) Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt Chem 69:52–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasilopoulou CG, Margarity M, Klapa MI (2016) Metabolomic analysis in brain research: opportunities and challenges. Front Physiol 7:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V, Castellanos M, Aller-de la Fuente R, Metwally M et al (2018) Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-National Cohort Study. Gastroenterology 155(2):443–457

    Article  PubMed  Google Scholar 

  • Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646

    Article  CAS  PubMed  Google Scholar 

  • Villoslada P, Alonso C, Agirrezabal I, Kotelnikova E, Zubizarreta I, Pulido-Valdeolivas I et al (2017) Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 4(2):e321

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10(3):181–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wang C (2013) Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J Breath Res 7(3):037109

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Kong H, Guan Y, Yang J, Gu J, Yang S et al (2005) Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem 77(13):4108–4116

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen X, Li Q, Zhong D (2008) Metabolite identification of arbidol in human urine by the study of CID fragmentation pathways using HPLC coupled with ion trap mass spectrometry. J Mass Spectrom 43(8):1099–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Want EJ, Cravatt BF, Siuzdak G (2005) The expanding role of mass spectrometry in metabolite profiling and characterization. Chembiochem 6(11):1941–1951

    Article  CAS  PubMed  Google Scholar 

  • Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J et al (2010) Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5(6):1005–1018

    Article  CAS  PubMed  Google Scholar 

  • Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS et al (2013) Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc 8(1):17–32

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  • Watrous JD, Henglin M, Claggett B, Lehmann KA, Larson MG, Cheng S et al (2017) Visualization, quantification, and alignment of spectral drift in population scale untargeted metabolomics data. Anal Chem 89(3):1399–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel SE, Busse WW, National Heart L (2007) Blood Institute's severe asthma research P. severe asthma: lessons from the severe asthma research program. J Allergy Clin Immunol 119(1):14–21

    Article  PubMed  Google Scholar 

  • Worley BP (2013) R. Multivariate analysis in metabolomics. Curr Metabolomics 1(1):92–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu AHB (2006) Clinical guide to laboratory tests, 4th edn. Saunders/Elsevier, St. Louis, MO

    Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6(6):743–760

    Article  CAS  PubMed  Google Scholar 

  • Xiao JF, Zhou B, Ressom HW (2012) Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt Chem. 32:1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashita MF, John B (1984) Electrospray ion source. Another variation on the free-jet theme. J Phys Chem 88(20):4451–4459

    Article  CAS  Google Scholar 

  • Yang J, Schmelzer K, Georgi K, Hammock BD (2009) Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem 81(19):8085–8093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Dong H, Hammock BD (2011) Profiling the regulatory lipids: another systemic way to unveil the biological mystery. Curr Opin Lipidol 22(3):197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo HJ, Hakansson K (2011) Determination of phospholipid regiochemistry by Ag(I) adduction and tandem mass spectrometry. Anal Chem 83(4):1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Yoo HJ, Liu H, Hakansson K (2007) Infrared multiphoton dissociation and Electron-induced dissociation as alternative MS/MS strategies for metabolite identification. Anal Chem 20:7858–7866

    Article  CAS  Google Scholar 

  • Yoo HJ, Wang N, Zhuang S, Song H, Hakansson K (2011) Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions. J Am Chem Soc 133(42):16790–16793

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Breitkopf SB, Yang X, Asara JM (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7(5):872–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yugi K, Kuroda S (2018) Metabolism as a signal generator across trans-omic networks at distinct time scales. Curr Opin Syst Biol 8:59–66

    Article  Google Scholar 

  • Zeng M, Cao H (2018) Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction. J Chromatogr 1083:137–145

    CAS  Google Scholar 

  • Zhang W, Hankemeier T, Ramautar R (2017) Next-generation capillary electrophoresis-mass spectrometry approaches in metabolomics. Curr Opin Biotechnol 43:1–7

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Fritsche J, Wang J, Chen J, Rittig K, Schmitt-Kopplin P et al (2010) Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics 6(3):362–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q et al (2013) A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 9(4):818–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Xiao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol BioSyst 8(2):470–481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (2018IL0540, 2019IL0540) from the Asan Institute of Life Sciences, Asan Medical Center, Seoul and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2019R1F1A1056286).

Conflicts of Interest

The authors declare no competing interests relevant to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ju Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, S.J., Song, H.E., Lee, H.Y., Yoo, H.J. (2021). Mass Spectrometry-based Metabolomics in Translational Research. In: Kim, J.K., Kim, J.K., Pack, CG. (eds) Advanced Imaging and Bio Techniques for Convergence Science. Advances in Experimental Medicine and Biology, vol 1310. Springer, Singapore. https://doi.org/10.1007/978-981-33-6064-8_19

Download citation

Publish with us

Policies and ethics