Skip to main content

White Matter-Based Structural Brain Network of Major Depression

  • Chapter
  • First Online:
Major Depressive Disorder

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1305))

Abstract

Major depressive disorder (MDD) is frequently characterized as a disorder of the disconnection syndrome. Diffusion tensor imaging (DTI) has played a critical role in supporting this view, with much investigation providing a large amount of evidence of structural connectivity abnormalities in the disorder. Recent research on the human connectome combined neuroimaging techniques with graph theoretic methods to highlight the disrupted topological properties of large-scale structural brain networks under depression, involving global metrics (e.g., global and local efficiencies), and local nodal properties (e.g., degree and betweenness), as well as other related metrics, including a modular structure, assortativity, and (rich) hubs. Here, we review the studies of white matter networks in the case of MDD with the application of these techniques, focusing principally on the consistent findings and the clinical significance of DTI-based network research, while discussing the key methodological issues that frequently arise in the field. The already published literature shows that MDD is associated with a widespread structural connectivity deficit. Topological alteration of structural brain networks in the case of MDD points to decreased overall connectivity strength and reduced global efficiency as well as decreased small-worldness and network resilience. These structural connectivity disturbances entail potential functional consequences, although the relationship between the two is very sophisticated and requires further investigation. In summary, the present study comprehensively maps the structural connectomic disturbances in patients with MDD across the entire brain, which adds important weight to the view suggesting connectivity abnormalities of this disorder and highlights the potential of network properties as diagnostic biomarkers in the psychoradiology field. Several common methodological issues of the study of DTI-based networks are discussed, involving sample heterogeneity and fiber crossing problems and the tractography algorithms. Finally, suggestions for future perspectives, including imaging multimodality, a longitudinal study and computational connectomics, in the further study of white matter networks under depression are given. Surmounting these challenges and advancing the research methods will be required to surpass the simple mapping of connectivity changes to illuminate the underlying psychiatric pathological mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jia Z, Huang X, Wu Q, Zhang T, Lui S, Zhang J et al (2010) High-field magnetic resonance imaging of suicidality in patients with major depressive disorder. Am J Psychiatry 167(11):1381–1390

    Article  PubMed  Google Scholar 

  2. North CS, Baron D, Chen AF (2018) Prevalence and predictors of postdisaster major depression: convergence of evidence from 11 disaster studies using consistent methods. J Psychiatr Res 102:96–101

    Article  PubMed  Google Scholar 

  3. Chen T, Kendrick KM, Wang J, Wu M, Li K, Huang X et al (2017) Anomalous single-subject based morphological cortical networks in drug-naive, first-episode major depressive disorder. Hum Brain Mapp 38(5):2482–2494

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gong Q, He Y (2015) Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry 77(3):223–235

    Article  PubMed  Google Scholar 

  5. Lui S, Zhou XJ, Sweeney JA, Gong Q (2016) Psychoradiology: the frontier of neuroimaging in psychiatry. Radiology 281(2):357–372

    Article  PubMed  Google Scholar 

  6. van Beek EJR, Kuhl C, Anzai Y, Desmond P, Ehman RL, Gong Q et al (2019) Value of MRI in medicine: more than just another test? J Magn Reson Imaging: JMRI 49(7):e14–e25

    Article  PubMed  Google Scholar 

  7. Tymofiyeva O, Connolly CG, Ho TC, Sacchet MD, Henje Blom E, LeWinn KZ et al (2017) DTI-based connectome analysis of adolescents with major depressive disorder reveals hypoconnectivity of the right caudate. J Affect Disord 207:18–25

    Article  PubMed  Google Scholar 

  8. Ho TC, Sacchet MD, Connolly CG, Margulies DS, Tymofiyeva O, Paulus MP et al (2017) Inflexible functional connectivity of the dorsal anterior cingulate cortex in adolescent major depressive disorder. Neuropsychopharmacology: Off Publ Am Coll Neuropsychopharmacol 42(12):2434–2445

    Article  Google Scholar 

  9. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506

    Article  PubMed  Google Scholar 

  10. Connolly CG, Wu J, Ho TC, Hoeft F, Wolkowitz O, Eisendrath S et al (2013) Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biol Psychiatry 74(12):898–907

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  12. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  13. Fields RD (2008) White matter matters. Sci Am 298(3):42–49

    PubMed  Google Scholar 

  14. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC (2009) Age- and gender-related differences in the cortical anatomical network. J Neurosci Off J Soc Neurosci 29(50):15684–15693

    Article  CAS  Google Scholar 

  17. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R et al (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2(7):e597

    Article  PubMed  PubMed Central  Google Scholar 

  18. Achard S, Bullmore ET (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):174–183

    Article  CAS  Google Scholar 

  19. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  20. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701

    Article  CAS  PubMed  Google Scholar 

  21. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci U S A 103(23):8577–8582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Networks 1(3):215–239

    Article  Google Scholar 

  23. van Haren NEM, Schnack HG, Cahn W, van den Heuvel MP, Lepage C, Collins L et al (2011) Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry 68(9):871–880

    Article  PubMed  Google Scholar 

  24. Schmidt A, Crossley NA, Harrisberger F, Smieskova R, Lenz C, Riecher-Rossler A et al (2017) Structural network disorganization in subjects at clinical high risk for psychosis. Schizophr Bull 43(3):583–591

    PubMed  Google Scholar 

  25. Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C et al (2010) Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage 50(3):970–983

    Article  PubMed  Google Scholar 

  26. Suo X, Lei D, Li L, Li W, Dai J, Wang S et al (2018) Psychoradiological patterns of small-world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders. J Psychiatry Neurosci: JPN 43(5):170214

    Google Scholar 

  27. Bai F, Shu N, Yuan Y, Shi Y, Yu H, Wu D et al (2012) Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J Neurosci Off J Soc Neurosci 32(12):4307–4318

    Article  CAS  Google Scholar 

  28. Mai N, Zhong X, Chen B, Peng Q, Wu Z, Zhang W et al (2017) Weight rich-club analysis in the white matter network of late-life depression with memory deficits. Front Aging Neurosci 9:279

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang Z, Yuan Y, You J, Zhang Z (2019) Disrupted structural brain connectome underlying the cognitive deficits in remitted late-onset depression. Brain Imaging Behav 14:1600

    Article  Google Scholar 

  30. Chen JH, Yao ZJ, Qin JL, Yan R, Hua LL, Lu Q (2016) Aberrant global and regional topological organization of the fractional anisotropy-weighted brain structural networks in major depressive disorder. Chin Med J 129(6):679–689

    Article  PubMed  PubMed Central  Google Scholar 

  31. Long Z, Duan X, Wang Y, Liu F, Zeng L, Zhao JP et al (2015) Disrupted structural connectivity network in treatment-naive depression. Prog Neuro-Psychopharmacol Biol Psychiatry 56:18–26

    Article  Google Scholar 

  32. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2(2):145–162

    Article  PubMed  Google Scholar 

  33. Bai F, Zhang Z, Watson DR, Yu H, Shi Y, Yuan Y et al (2009) Abnormal integrity of association fiber tracts in amnestic mild cognitive impairment. J Neurol Sci 278(1–2):102–106

    Article  PubMed  Google Scholar 

  34. Caeyenberghs K, Duprat R, Leemans A, Hosseini H, Wilson PH, Klooster D et al (2019) Accelerated intermittent theta burst stimulation in major depression induces decreases in modularity: a connectome analysis. Netw Neurosci (Cambridge, Mass) 3(1):157–172

    Google Scholar 

  35. Yao Z, Zou Y, Zheng W, Zhang Z, Li Y, Yu Y et al (2019) Structural alterations of the brain preceded functional alterations in major depressive disorder patients: evidence from multimodal connectivity. J Affect Disord 253:107–117

    Article  PubMed  Google Scholar 

  36. Zheng K, Wang H, Li J, Yan B, Liu J, Xi Y et al (2019) Structural networks analysis for depression combined with graph theory and the properties of fiber tracts via diffusion tensor imaging. Neurosci Lett 694:34–40

    Article  CAS  PubMed  Google Scholar 

  37. Park CH, Wang SM, Lee HK, Kweon YS, Lee CT, Kim KT et al (2014) Affective state-dependent changes in the brain functional network in major depressive disorder. Soc Cogn Affect Neurosci 9(9):1404–1412

    Article  PubMed  Google Scholar 

  38. Li X, Steffens DC, Potter GG, Guo H, Song S, Wang L (2017) Decreased between-hemisphere connectivity strength and network efficiency in geriatric depression. Hum Brain Mapp 38(1):53–67

    Article  PubMed  Google Scholar 

  39. Chen VC, Shen CY, Liang SH, Li ZH, Tyan YS, Liao YT et al (2016) Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses. J Affect Disord 205:103–111

    Article  PubMed  Google Scholar 

  40. Vaessen MJ, Jansen JF, Vlooswijk MC, Hofman PA, Majoie HJ, Aldenkamp AP et al (2012) White matter network abnormalities are associated with cognitive decline in chronic epilepsy. Cereb Cortex 22(9):2139–2147

    Article  PubMed  Google Scholar 

  41. Lu Y, Shen Z, Cheng Y, Yang H, He B, Xie Y et al (2017) Alternations of white matter structural networks in first episode untreated major depressive disorder with short duration. Front Psych 8:205

    Article  Google Scholar 

  42. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci Off J Soc Neurosci 31(44):15775–15786

    Article  CAS  Google Scholar 

  43. Charlton RA, Leow A, GadElkarim J, Zhang A, Ajilore O, Yang S et al (2015) Brain connectivity in late-life depression and aging revealed by network analysis. Am J Geriatr Psychiatry: Off J Am Assoc Geriatr Psychiatry 23(6):642–650

    Article  Google Scholar 

  44. Ajilore O, Lamar M, Kumar A (2014) Association of brain network efficiency with aging, depression, and cognition. Am J Geriatr Psychiatry 22(2):102–110

    Article  PubMed  Google Scholar 

  45. Davis J, Maes M, Andreazza A, McGrath JJ, Tye SJ, Berk M (2015) Towards a classification of biomarkers of neuropsychiatric disease: from encompass to compass. Mol Psychiatry 20(2):152–153

    Article  CAS  PubMed  Google Scholar 

  46. Weickert CS, Weickert TW, Pillai A, Buckley PF (2013) Biomarkers in schizophrenia: a brief conceptual consideration. Dis Markers 35(1):3–9

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sun YT, Chen TL, He D, Dong ZQ, Cheng BC, Wang S et al (2019) Research progress of biological markers for depression based on psychoradiology and artificial intelligence. Prog Biochem Biophys 46(9):879–899

    Google Scholar 

  48. Jiang X, Shen Y, Yao J, Zhang L, Xu L, Feng R et al (2019) Connectome analysis of functional and structural hemispheric brain networks in major depressive disorder. Transl Psychiatry 9(1):136

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH (2014) Elucidating brain connectivity networks in major depressive disorder using classification-based scoring. Proc IEEE Int Symp Biomed Imaging 2014:246–249

    PubMed  PubMed Central  Google Scholar 

  50. Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH (2015) Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front Psych 6:21

    Google Scholar 

  51. Liu LY, Xu XP, Luo LY, Zhu CQ, Li YP, Wang PR et al (2019) Brain connectomic associations with traditional Chinese medicine diagnostic classification of major depressive disorder: a diffusion tensor imaging study. Chin Med 14:15

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23(7):803–820

    Article  PubMed  Google Scholar 

  53. Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and dont’s of diffusion MRI. NeuroImage 73:239–254

    Article  PubMed  Google Scholar 

  54. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 41(4):1267–1277

    Article  CAS  PubMed  Google Scholar 

  55. Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40(3):1064–1076

    Article  PubMed  Google Scholar 

  56. Bassett DS, Gazzaniga MS (2011) Understanding complexity in the human brain. Trends Cogn Sci 15(5):200–209

    Article  PubMed  PubMed Central  Google Scholar 

  57. Leuze CW, Anwander A, Bazin PL, Dhital B, Stuber C, Reimann K et al (2014) Layer-specific intracortical connectivity revealed with diffusion MRI. Cereb Cortex 24(2):328–339

    Article  PubMed  Google Scholar 

  58. McNab JA, Jbabdi S, Deoni SC, Douaud G, Behrens TE, Miller KL (2009) High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession. NeuroImage 46(3):775–785

    Article  PubMed  Google Scholar 

  59. Takahashi E, Song JW, Folkerth RD, Grant PE, Schmahmann JD (2013) Detection of postmortem human cerebellar cortex and white matter pathways using high angular resolution diffusion tractography: a feasibility study. NeuroImage 68:105–111

    Article  PubMed  Google Scholar 

  60. Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M (2013) Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J Neurosci Off J Soc Neurosci 33(27):11239–11252

    Article  CAS  Google Scholar 

  61. Lord LD, Stevner AB, Deco G, Kringelbach ML (2017) Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders. Philos Transact A Math Phys Eng Sci 375(2096):20160283

    Google Scholar 

  62. Deco G, Kringelbach ML (2014) Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84(5):892–905

    Article  CAS  PubMed  Google Scholar 

  63. Ritter P, Schirner M, McIntosh AR, Jirsa VK (2013) The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect 3(2):121–145

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cabral J, Hugues E, Kringelbach ML, Deco G (2012) Modeling the outcome of structural disconnection on resting-state functional connectivity. NeuroImage 62(3):1342–1353

    Article  PubMed  Google Scholar 

  65. Raj A, Kuceyeski A, Weiner M (2012) A network diffusion model of disease progression in dementia. Neuron 73(6):1204–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Korgaonkar MS, Fornito A, Williams LM, Grieve SM (2014) Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry 76(7):567–574

    Article  PubMed  Google Scholar 

  67. Qin J, Wei M, Liu H, Yan R, Luo G, Yao Z, Lu Q (2014) Abnormal brain anatomical topological organization of the cognitive-emotional and the frontoparietal circuitry in major depressive disorder. Magn Reson Med 72(5):1397–1407

    Article  PubMed  Google Scholar 

  68. Myung W, Han CE, Fava M, Mischoulon D, Papakostas GI, Heo JY, Kim KW, Kim ST, Kim DJ, Kim DK, Seo SW, Seong JK, Jeon HJ (2016) Reduced frontalsubcortical white matter connectivity in association with suicidal ideation in major depressive disorder. Transl Psychiatry 6(6):e835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu H, Zhao K, Shi J, Chen Y, Yao Z, Lu Q (2018) Topological properties of brain structural networks represent early predictive characteristics for the occurrence of bipolar disorder in patients with major depressive disorder: a 7-year prospective longitudinal study. Front Psych 9:704

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyong Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, T., Chen, Z., Gong, Q. (2021). White Matter-Based Structural Brain Network of Major Depression. In: Kim, YK. (eds) Major Depressive Disorder. Advances in Experimental Medicine and Biology, vol 1305. Springer, Singapore. https://doi.org/10.1007/978-981-33-6044-0_3

Download citation

Publish with us

Policies and ethics