Skip to main content

Selection of Classifiers for Hand Gesture Recognition Using Analytic Hierarchy Process: A Systematic Literature Review

  • Conference paper
  • First Online:
Advances and Applications in Computer Science, Electronics and Industrial Engineering

Abstract

This article presents a systematic study for the selection of classifiers for hand gesture recognition by electromyography signals. The selection of a classifier can be determined using an arbitrary search criterion or employing an Analytic Hierarchy Process (AHP). The classifiers are determined as alternatives, which for the study are K-Nearest Neighbors (KNN), Naïve Bayes (NB), Support Vector Machines (SVM), and Linear Discriminant Analysis (LDA). Each of these alternatives is selected through search criteria, which are average training accuracy, average testing accuracy, sampling fee, average acceptance rating, and scrap rating average. These criteria and alternatives allow through a systematic study and the AHP model to select each search factor of the analysis of the systematic mapping (SMS) quantitatively. The results determine the KNN and SVM classifiers as the most used for research projects in electromyography signal recognition (EMG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An experimental comparative analysis among different classifiers applied to identify hand movements based on sEMG. In: 2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017. vol. 2017-January, pp. 1–6. Institute of Electrical and Electronics Engineers Inc. (2018). https://doi.org/10.1109/ETCM.2017.8247504

  2. Alkan, A., Günay, M.: Identification of EMG signals using discriminant analysis and SVM classifier. Expert. Syst. Appl. 39(1), 44–47 (jan 2012). https://doi.org/10.1016/j.eswa.2011.06.043

  3. Amirabdollahian, F., Walters, M.L.: Application of support vector machines in detecting hand grasp gestures using a commercially off the shelf wireless myoelectric armband. In: IEEE International Conference on Rehabilitation Robotics, pp. 111–115. IEEE Computer Society (2017). https://doi.org/10.1109/ICORR.2017.8009231

  4. Caiza, G., Garcia, C., Naranjo, J., Garcia, M.: Flexible robotic teleoperation architecture for intelligent oil fields. Heliyon 6(4) (2020). https://doi.org/10.1016/j.heliyon.2020.e03833

  5. Caiza, G., Saeteros, M., Oñate, W., Garcia, M.: Fog computing at industrial level, architecture, latency, energy, and security: a review. Heliyon 6(4) (2020). https://doi.org/10.1016/j.heliyon.2020.e03706

  6. Deng, J., Niu, J., Wang, K., Xie, L., Yang, G.: Discriminant analysis based EMG pattern recognition for hand function rehabilitation. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST. vol. 247, pp. 207–214. Springer (2018). https://doi.org/10.1007/978-3-319-98551-0_24

  7. Falih, A.D.I., Adhi Dharma, W., Sumpeno, S.: Classification of EMG signals from forearm muscles as automatic control using Naive Bayes. In: 2017 International Seminar on Intelligent Technology and Its Application: Strengthening the Link Between University Research and Industry to Support ASEAN Energy Sector, ISITIA 2017 - Proceeding. vol. 2017-January, pp. 346–351. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.org/10.1109/ISITIA.2017.8124107

  8. Hartwell, A., Kadirkamanathan, V., Anderson, S.: Person-specific gesture set selection for optimised movement classification from EMG signals. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. vol. 2016-October, pp. 880–883. Institute of Electrical and Electronics Engineers Inc. (2016). https://doi.org/10.1109/EMBC.2016.7590841

  9. Hidalgo Torres, L.A., San Martín Reyes, Y., Chailloux Peguero, J.D.: Capture of the Voluntary Motor Intention from the Electromyography Signal. In: IFMBE Proceedings. vol. 75, pp. 28–36. Springer (2020). https://doi.org/10.1007/978-3-030-30648-9_4

  10. Kim, K.S., Choi, H.H., Moon, C.S., Mun, C.W.: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11(3), 740–745 (2011). https://doi.org/10.1016/j.cap.2010.11.051

  11. Mendez, I., Hansen, B.W., Grabow, C.M., Smedegaard, E.J., Skogberg, N.B., Uth, X.J., Bruhn, A., Geng, B., Kamavuako, E.N.: Evaluation of the Myo armband for the classification of hand motions. In: IEEE International Conference on Rehabilitation Robotics. pp. 1211–1214. IEEE Computer Society (2017). https://doi.org/10.1109/ICORR.2017.8009414

  12. Montalvo, W., Escobar-Naranjo, J., Garcia, C., Garcia, M.: Low-cost automation for gravity compensation of robotic arm. Appl. Sci. (Switzerland) 10(11) (2020). https://doi.org/10.3390/app10113823

  13. Montalvo, W., Garcia, C., Naranjo, J., Ortiz, A., Garcia, M.: Tele-operation system for mobile robots using in oil & gas industry [sistema de tele-operación para robots móviles en la industria del petróleo y gas]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 2020(E29), 351–365 (2020), cited By 0

    Google Scholar 

  14. Parajuli, N., Sreenivasan, N., Bifulco, P., Cesarelli, M., Savino, S., Niola, V., Esposito, D., Hamilton, T.J., Naik, G.R., Gunawardana, U., et al.: Real-time emg based pattern recognition control for hand prostheses: a review on existing methods, challenges and future implementation. Sensors 19(20), 4596 (2019)

    Google Scholar 

  15. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. Technical report, www.splc.net

  16. Phienthrakul, T.: Armband gesture recognition on electromyography signal for virtual control. In: 2018 10th International Conference on Knowledge and Smart Technology: Cybernetics in the Next Decades, KST 2018, pp. 149–153. Institute of Electrical and Electronics Engineers Inc. (2018). https://doi.org/10.1109/KST.2018.8426118

  17. Phukan, N., Kakoty, N.M., Shivam, P., Gan, J.Q.: Finger movements recognition using minimally redundant features of wavelet denoised emg. Health Technol. 9(4), 579–593 (2019)

    Article  Google Scholar 

  18. Riillo, F., Quitadamo, L.R., Cavrini, F., Gruppioni, E., Pinto, C.A., Pastò, N.C., Sbernini, L., Albero, L., Saggio, G.: Optimization of EMG-based hand gesture recognition: supervised vs. unsupervised data preprocessing on healthy subjects and transradial amputees. Biomed. Signal Process. Control 14(1), 117–125 (2014). https://doi.org/10.1016/j.bspc.2014.07.007

  19. Rodriguez-Falces, J., Navallas, J., Mal, A.: EMG Modeling. In: Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges. InTech (2012). https://doi.org/10.5772/50304

  20. Saaty, T.L.: Decision making with the analytic hierarchy process - International Journal of Services Sciences - Volume 1, Number 1/2008 - Inderscience Publishers. Int. J. Serv. Sci. 1(1), 83–98 (2008). https://doi.org/10.1504/IJSSci.2008.01759

    Article  Google Scholar 

  21. Saikia, A., Mazumdar, S., Sahai, N., Paul, S., Bhatia, D.: Performance analysis of artificial neural network for hand movement detection from emg signals. IETE J. Res., pp. 1–10 (2019)

    Google Scholar 

  22. Shin, J., Islam, M.R., Rahim, M.A., Mun, H.J.: Arm movement activity based user authentication in P2P systems. Peer-to-Peer Networking and Applications (2019). https://doi.org/10.1007/s12083-019-00775-7

  23. Singhvi, S., Ren, H.: Comparative study of motion recognition with temporal modelling of electromyography for thumb and index finger movements aiming for wearable robotic finger exercises. In: ICARM 2018 - 2018 3rd International Conference on Advanced Robotics and Mechatronics, pp. 509–514. Institute of Electrical and Electronics Engineers Inc. (2019). https://doi.org/10.1109/ICARM.2018.8610843

  24. Song, W., Han, Q., Lin, Z., Yan, N., Luo, D., Liao, Y., Zhang, M., Wang, Z., Xie, X., Wang, A., et al.: Design of a flexible wearable smart semg recorder integrated gradient boosting decision tree based hand gesture recognition. IEEE Trans. Biomed. Circuits Syst. 13(6), 1563–1574 (2019)

    Article  Google Scholar 

  25. Stashuk, D.W., Farina, D.: Electromyography. Wiley, Hoboken (2004). https://doi.org/10.1002/0471678384

  26. Tamani, J.E., Cruz, J.C.B., Cruzada, J.R., Valenzuela, J., Chan, K.G., Deja, J.A.: Building guitar strum models for an interactive air guitar prototype. In: ACM International Conference Proceeding Series. vol. Part F137694, pp. 18–22. Association for Computing Machinery (2018). https://doi.org/10.1145/3205946.3205972

  27. Vaidya, O.S., Kumar, S.: Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res. 169(1), 1–29 (2006). https://doi.org/10.1016/j.ejor.2004.04.028

  28. Wahid, M.F., Tafreshi, R., Al-Sowaidi, M., Langari, R.: An efficient approach to recognize hand gestures using machine-learning algorithms. In: Middle East Conference on Biomedical Engineering, MECBME. vol. 2018-March, pp. 171–176. IEEE Computer Society (2018). https://doi.org/10.1109/MECBME.2018.8402428

  29. Zhang, Z., He, C., Yang, K.: A novel surface electromyographic signal-based hand gesture prediction using a recurrent neural network. Sensors 20(14), 3994 (2020)

    Google Scholar 

  30. Zia ur Rehman, M., Waris, A., Gilani, S., Jochumsen, M., Niazi, I., Jamil, M., Farina, D., Kamavuako, E.: Multiday EMG-based classification of hand motions with deep learning techniques. Sensors 18(8), 2497 (2018). https://doi.org/10.3390/s18082497, http://www.mdpi.com/1424-8220/18/8/2497

Download references

Acknowledgements

The Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA) for the development of the research project CEPRA-2019-13-Reconocimiento de Gestos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Nogales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nogales, R., Benalcazar, F., Guilcapi, J., Vargas, J. (2021). Selection of Classifiers for Hand Gesture Recognition Using Analytic Hierarchy Process: A Systematic Literature Review. In: García, M.V., Fernández-Peña, F., Gordón-Gallegos, C. (eds) Advances and Applications in Computer Science, Electronics and Industrial Engineering. Advances in Intelligent Systems and Computing, vol 1307. Springer, Singapore. https://doi.org/10.1007/978-981-33-4565-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4565-2_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4564-5

  • Online ISBN: 978-981-33-4565-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics