Skip to main content

Tea: A Worthwhile, Popular Beverage Crop Since Time Immemorial

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Not only for the age-old customs but also the recent advancement in researches has pointed towards the fact that the several beneficial components present in tea help to achieve its popularity as a second best drink after water across the world. According to World Tea News, in 2015–2016, the total world tea production reached up to 4,481,860 tonnes, in which Indian share was 28.8% (1,29,190 tonnes) and this is almost twice the amount to that of 10 years back. Similarly, world tea economy has also appeared to its healthy business figure since the last decades (28.2 billion US$ in 2016). The global market is broadly controlled by black and green teas, although there are more types of teas that are being consumed according to local consumer’s perception (oolong, white, yellow, and pu-erh). Commercially, tea leaves are harvested at different stages of growth and undergo a series of processing techniques (withering, disrupting, oxidising, fixing, sweltering, rolling, and drying) before being packaged and marketed. Subject to the implementation of the all steps of processing or omitting some steps and duration, different types of teas are prepared. During processing, the phytochemicals present in green tea leaves are being greatly modified, and each variety of tea appears with specific colour, aroma, taste, and briskness after infusion. A typical agroclimatic condition is required for quality production of tea. Acidic soil, 5–10° of slopes, temperature ranging from 10 to 30 °C, minimum average rainfall 100–120 cm/year, more than 2000 mt. above sea level of elevation, and well drainage system are the ideal agroclimatic situation for tea cultivation. Different polyphenols and their derivative (catechin, epicatechin, epigallocatechin gallate, epigallocatechin, theaflavins, thearubigins, etc.) and several free radical scavenging elements in infused tea have proven their health assistance feature in recent researches. Conventional breeding technique is not competently applicable for this utility crop because of their self-incompatibility. Hence, several techniques of molecular breeding occupy the frontline research on tea. In this regard, molecular marker-assisted research for better facility to locate the essential gene location in whole genome sequence for the desirable agronomic traits is in lime light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almajano MP, Carbo R, Jiménez JAL, Gordon MH (2008) Antioxidant and antimicrobial activities of tea infusions. Food Chem 108(1):55–63

    CAS  Google Scholar 

  • Arab L, Liebeskind DS (2010) Tea, flavonoids and stroke in man and mouse. Arch Biochem Biophys 501(1):31–36

    CAS  PubMed  Google Scholar 

  • Arab L, Liu W, Elashoff D (2009) Green and black tea consumption and risk of stroke: a meta-analysis. Stroke 40(5):1786–1792

    CAS  PubMed  Google Scholar 

  • Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutrit 37(8):693–704

    CAS  Google Scholar 

  • Bali S, Raina SN, Bhat V, Aggarwal RK, Goel S (2013) Development of a set of genomic microsatellite markers in tea (Camellia L.)(Camelliaceae). Mol Breed 32(3):735–741

    CAS  Google Scholar 

  • Bali S, Mamgain A, Raina SN, Yadava SK, Bhat V, Das S, Pradhan AK, Goel S (2015) Construction of a genetic linkage map and mapping of drought tolerance trait in Indian beveragial tea. Mol Breed 35(5):112

    Google Scholar 

  • Bancirova M (2010) Comparison of the antioxidant capacity and the antimicrobial activity of black and green tea. Food Res Int 43(5):1379–1382

    CAS  Google Scholar 

  • Bandyopadhaya T, Das S (2008) Biotechnology: its prospects in tea improvement. Assam Rev Tea News 97:30–35

    Google Scholar 

  • Bandyopadhyay T (2011) Molecular marker technology in genetic improvement of tea. Int J Plant Breed Genet 5(1):23–33

    Google Scholar 

  • Baruwā D (2008) Science and practice in tea culture. Tea Research Association,

    Google Scholar 

  • Bhattacharyya N, Seth S, Tudu B, Tamuly P, Jana A, Ghosh D, Bandyopadhyay R, Bhuyan M, Sabhapandit S (2007) Detection of optimum fermentation time for black tea manufacturing using electronic nose. Sensors Actuators B Chem 122(2):627–634

    CAS  Google Scholar 

  • Bøhn SK, Ward NC, Hodgson JM, Croft KD (2012) Effects of tea and coffee on cardiovascular disease risk. Food Funct 3(6):575–591

    PubMed  Google Scholar 

  • Chan KP (2006) First step to Chinese Puerh tea. Wushing Books Pub.,

    Google Scholar 

  • Chan EWC, Lim YY, Chew Y (2007) Antioxidant activity of Camellia sinensisleaves and tea from a lowland plantation in Malaysia. Food Chem 102(4):1214–1222

    CAS  Google Scholar 

  • Chan E, Lim Y, Chong K, Tan J, Wong S (2010) Antioxidant properties of tropical and temperate herbal teas. J Food Compos Anal 23(2):185–189

    CAS  Google Scholar 

  • Chang HT (1981) A taxonomy of the genus Camellia. J Sun Yatsen Univ 1:68–69

    Google Scholar 

  • Chang HT, Bartholomew B (1984) Camellias. London: BT Batsford 211p-illus, maps, keys En Icones, Maps Geog 2 (6)

    Google Scholar 

  • Chen LA (2017) high density genetic map for underlying the QTLs associated with the main quality and functional components such as catechins, caffeine in tea plant (Camellia sinensis). In: Joint Conference on 8th World Congress on Agriculture and Horticulture and 16th Euro Global Summit on Food and Beverages. J Food Process Technol, Amsterdam

    Google Scholar 

  • Chen L, Yamaguchi S (2005) RAPD markers for discriminating tea germplasms at the inter-specific level in China. Plant Breed 124(4):404–409

    CAS  Google Scholar 

  • Chen C, Wei K, Wang L, Ruan L, Li H, Zhou X, Lin Z, Shan R, Cheng H (2017) Expression of key structural genes of the phenylpropanoid pathway associated with catechin epimerization in tea cultivars. Front Plant Sci 8:702

    PubMed  PubMed Central  Google Scholar 

  • Chopade V, Phatak A, Upaganlawar A, Tankar A (2008) Green tea (Camellia sinensis): Chemistry, traditional, medicinal uses and its pharmacological activities-a review. Pharmacogn Rev 2(3):157

    CAS  Google Scholar 

  • Chowdhury A, Sarkar S, Roy P, Mondal S, Chowdhury M (2015) Inventory of shade trees in tea gardens of sub-himalayans region of West Bengal, India. Int J Sci Technol 3(12):164

    Google Scholar 

  • Chun OK, Chung SJ, Song WO (2007) Estimated dietary flavonoid intake and major food sources of US adults. J Nutr 137(5):1244–1252

    CAS  PubMed  Google Scholar 

  • Clay J (2013) World agriculture and the environment: a commodity-by-commodity guide to impacts and practices. Island Press

    Google Scholar 

  • Cooper R (2012) Green tea and theanine: health benefits. Int J Food Sci Nutrit 63(sup1):90–97

    CAS  Google Scholar 

  • Das SC, Das S, Hazarika M (2012) Breeding of the tea plant (Camellia sinensis) in india. In: Global Tea Breeding. Springer, pp 69–124

    Google Scholar 

  • Di Castelnuovo A, Di Giuseppe R, Iacoviello L, de Gaetano G (2012) Consumption of cocoa, tea and coffee and risk of cardiovascular disease. Eur J Intern Med 23(1):15–25

    PubMed  Google Scholar 

  • Elangbam M, Misra A (2016) Development of CAPS markers to identify Indian tea (Camellia sinensis) clones with high catechin content. Genet Mol Res 15(2):1–13

    CAS  Google Scholar 

  • Eungwanichayapant P, Popluechai S (2009) Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis. Plant Physiol Biochem 47(2):94–97

    CAS  PubMed  Google Scholar 

  • Fang W, Meinhardt LW, Tan H, Zhou L, Mischke S, Wang X, Zhang D (2016) Identification of the varietal origin of processed loose-leaf tea based on analysis of a single leaf by SNP nanofluidic array. Crop J 4(4):304–312

    Google Scholar 

  • Farhoosh R, Golmovahhed GA, Khodaparast MH (2007) Antioxidant activity of various extracts of old tea leaves and black tea wastes (Camellia sinensis L.). Food Chem 100(1):231–236

    CAS  Google Scholar 

  • Gardner E, Ruxton C, Leeds A (2007) Black tea–helpful or harmful? A review of the evidence. Eur J Clin Nutr 61(1):3

    CAS  PubMed  Google Scholar 

  • Gohain B, Borchetia S, Bhorali P, Agarwal N, Bhuyan L, Rahman A, Sakata K, Mizutani M, Shimizu B, Gurusubramaniam G (2012) Understanding Darjeeling tea flavour on a molecular basis. Plant Mol Biol 78(6):577–597

    CAS  PubMed  Google Scholar 

  • Gong Y, Cai L, Cai S, Jin H (2000) Study on the effect of stack cover process on the taste of yellow tea. J Tea Sci 2:110–113

    Google Scholar 

  • Goonetilleke W, Priyantha P, Mewan K, Gunasekare M (2009) Assessment of genetic diversity of Tea (Camellia sinensis LO Kuntze) as revealed by RAPD-PCR markers. J Natl Sci Found 37(2):147

    CAS  Google Scholar 

  • Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21(3):334–350

    CAS  PubMed  Google Scholar 

  • Grassi D, Mulder TP, Draijer R, Desideri G, Molhuizen HO, Ferri C (2009) Black tea consumption dose-dependently improves flow-mediated dilation in healthy males. J Hypertens 27(4):774–781

    CAS  PubMed  Google Scholar 

  • Guang L (2007) In: Ling CC (ed) The traditional processing of Wuyi Rock Teas: an interview with Master Ling Ping Xang, The Art of Tea. Wushing Book Publisher (2)

    Google Scholar 

  • Hadfield W (1974) Shade in North-East Indian tea plantations. I. The shade pattern. J Appl Ecol 11:151–178

    Google Scholar 

  • Hazra A, Dasgupta N, Sengupta C, Das S (2017a) Extrapolative microRNA precursor based SSR mining from tea EST database in respect to agronomic traits. BMC Res Notes 10(1):261

    PubMed  PubMed Central  Google Scholar 

  • Hazra A, Saha J, Dasgupta N, Sengupta C, Kumar PM, Das S (2017b) Health-benefit assets of different Indian processed teas: a comparative approach. Am J Plant Sci 8(07):1607

    CAS  Google Scholar 

  • Hazra A, Dasgupta N, Sengupta C, Das S (2018) Next generation crop improvement program: Progress and prospect in tea (Camellia sinensis (L.) O. Kuntze). Ann Agrarian Sci 16(2):128–135

    Google Scholar 

  • Hodgson JM, Puddey IB, Woodman RJ, Mulder TP, Fuchs D, Scott K, Croft KD (2012) Effects of black tea on blood pressure: a randomized controlled trial. Arch Intern Med 172(2):186–188

    PubMed  Google Scholar 

  • Horžić D, Komes D, Belščak A, Ganić KK, Iveković D, Karlović D (2009) The composition of polyphenols and methylxanthines in teas and herbal infusions. Food Chem 115(2):441–448

    Google Scholar 

  • Ito Y, Sugimoto A, Kakuda T, Kubota K (2002) Identification of potent odorants in Chinese jasmine green tea scented with flowers of Jasminum sambac. J Agric Food Chem 50(17):4878–4884

    CAS  PubMed  Google Scholar 

  • Jeyaraj A, Zhang X, Hou Y, Shangguan M, Gajjeraman P, Li Y, Wei C (2017) Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences. BMC Plant Biol 17(1):212

    PubMed  PubMed Central  Google Scholar 

  • Johnson R, Bryant S, Huntley AL (2012) Green tea and green tea catechin extracts: an overview of the clinical evidence. Maturitas 73(4):280–287

    CAS  PubMed  Google Scholar 

  • Kalita RM, Das AK, Nath AJ (2014) Comparative study on growth performance of two shade trees in tea agroforestry system. J Environ Biol 35(4):699

    PubMed  Google Scholar 

  • Kamunya S, Wachira F, Pathak R, Korir R, Sharma V, Kumar R, Bhardwaj P, Chalo R, Ahuja P, Sharma R (2010) Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze). Tree Genet Genomes 6(6):915–929

    Google Scholar 

  • Karori S, Wachira F, Wanyoko J, Ngure R (2007) Antioxidant capacity of different types of tea products. Afr J Biotechnol 6(19):2287

    CAS  Google Scholar 

  • Khan N, Mukhtar H (2013) Tea and health: studies in humans. Curr Pharm Des 19(34):6141–6147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koech RK, Malebe PM, Nyarukowa C, Mose R, Kamunya SM, Apostolides Z (2018) Identification of novel QTL for black tea quality traits and drought tolerance in tea plants (Camellia sinensis). Tree Genet Genomes 14(1):9

    Google Scholar 

  • Kondo K, Kurihara M, Miyata N, Suzuki T, Toyoda M (1999) Scavenging mechanisms of (−)-epigallocatechin gallate and (−)-epicatechin gallate on peroxyl radicals and formation of superoxide during the inhibitory action. Free Radic Biol Med 27(7–8):855–863

    CAS  PubMed  Google Scholar 

  • Kosińska A, Andlauer W (2014) Antioxidant capacity of tea: effect of processing and storage. In: Processing and impact on antioxidants in beverages. Elsevier, Boston, pp 109–120

    Google Scholar 

  • Kuhnert N (2010) Unraveling the structure of the black tea thearubigins. Arch Biochem Biophys 501(1):37–51

    CAS  PubMed  Google Scholar 

  • Kumar R, Ahuja PS, Sharma RK (2016) Status and opportunities of molecular breeding approaches for genetic improvement of tea. In: Molecular breeding for sustainable crop improvement. Springer, Cham, pp 101–125

    Google Scholar 

  • Li C-F, Zhu Y, Yu Y, Zhao Q-Y, Wang S-J, Wang X-C, Yao M-Z, Luo D, Li X, Chen L (2015) Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 16(1):560

    PubMed  PubMed Central  Google Scholar 

  • Liang Y, Xu Y (2001) Effect of pH on cream particle formation and solids extraction yield of black tea. Food Chem 74(2):155–160

    CAS  Google Scholar 

  • Liang Y, Lu J, Zhang L, Wu S, Wu Y (2003) Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem 80(2):283–290

    CAS  Google Scholar 

  • Liu M, Tian H-L, Wu J-H, Cang R-R, Wang R-X, Qi X-H, Xu Q, Chen X-H (2015) Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.). Hortic Res 2:15011

    PubMed  PubMed Central  Google Scholar 

  • Łuczaj W, Skrzydlewska E (2005) Antioxidative properties of black tea. Prev Med 40(6):910–918

    PubMed  Google Scholar 

  • Luo Y-p, Tang M, Cai W-z, Wen D-h, Wen Z-j (2008) Study on the optimum machine-plucking period for high quality tea [J]. J Tea Sci 1:003

    Google Scholar 

  • Ma J-Q, Yao M-Z, Ma C-L, Wang X-C, Jin J-Q, Wang X-M, Chen L (2014) Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS One 9(3):e93131

    PubMed  PubMed Central  Google Scholar 

  • Maras JE, Talegawkar SA, Qiao N, Lyle B, Ferrucci L, Tucker KL (2011) Flavonoid intakes in the Baltimore longitudinal study of aging. J Food Compos Anal 24(8):1103–1109

    CAS  Google Scholar 

  • Ming T, Zhang W (1996) The evolution and distribution of genus Camellia. Acta Bot Yunnanica 18(1):1–13

    Google Scholar 

  • Mishra RK, Sen-Mandi S (2004) Molecular profiling and development of DNA marker associated with drought tolerance in tea clones growing in Darjeeling. Curr Sci 87(1):60–66

    CAS  Google Scholar 

  • Mohotti A (2004) Shade in Tea. Is it beneficial?

    Google Scholar 

  • Mondal TK (2014) Breeding and biotechnology of tea and its wild species. Springer, New Delhi

    Google Scholar 

  • Mphangwe NI, Vorster J, Steyn JM, Nyirenda HE, Taylor NJ, Apostolides Z (2013) Screening of tea (Camellia sinensis) for trait-associated molecular markers. Appl Biochem Biotechnol 171(2):437–449

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay M, Mondal TK, Chand PK (2016) Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Rep 35(2):255–287

    CAS  PubMed  Google Scholar 

  • Mulder TP, van Platerink CJ, Schuyl PW, van Amelsvoort JM (2001) Analysis of theaflavins in biological fluids using liquid chromatography–electrospray mass spectrometry. J Chromatogr B Biomed Sci Appl 760(2):271–279

    CAS  PubMed  Google Scholar 

  • Panza F, Solfrizzi V, Barulli M, Bonfiglio C, Guerra V, Osella A, Seripa D, Sabba C, Pilotto A, Logroscino G (2015) Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. J Nutr Health Aging 19(3):313–328

    CAS  PubMed  Google Scholar 

  • Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean MEJ, Hara Y, Crozier A (2017) Bioavailability of black tea theaflavins: absorption, metabolism, and colonic catabolism. J Agric Food Chem 65(26):5365–5374. https://doi.org/10.1021/acs.jafc.7b01707

    Article  CAS  PubMed  Google Scholar 

  • Peterson J, Dwyer J, Bhagwat S, Haytowitz D, Holden J, Eldridge A, Beecher G, Aladesanmi J (2005) Major flavonoids in dry tea. J Food Compos Anal 18(6):487–501

    CAS  Google Scholar 

  • Raina S, Ahuja P, Sharma R, Das S, Bhardwaj P, Negi R, Sharma V, Singh S, Sud R, Kalia R (2012) Genetic structure and diversity of India hybrid tea. Genet Resour Crop Evol 59(7):1527–1541

    CAS  Google Scholar 

  • Ravichandran R, Parthiban R (1998) The impact of mechanization of tea harvesting on the quality of south Indian CTC teas. Food Chem 63(1):61–64

    CAS  Google Scholar 

  • Richards A (1966) The breeding, selection and propagation of tea

    Google Scholar 

  • Roberts E (1958) The chemistry of tea manufacture. J Sci Food Agric 9(7):381–390

    CAS  Google Scholar 

  • Schini-Kerth VB, Étienne-Selloum N, Chataigneau T, Auger C (2011) Vascular protection by natural product-derived polyphenols: in vitro and in vivo evidence. Planta Med 77(11):1161–1167

    CAS  PubMed  Google Scholar 

  • Shanmugarajah V (1994) Selection criteria for tea

    Google Scholar 

  • Sharma A, Wang R, Zhou W, Shahidi F (2010) Functional foods from green tea. Functional Foods of the East, CRC Press, Boca Raton, pp 173–195

    Google Scholar 

  • Shi C-Y, Yang H, Wei C-L, Yu O, Zhang Z-Z, Jiang C-J, Sun J, Li Y-Y, Chen Q, Xia T (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12(1):131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song WO, Chun OK (2008) Tea is the major source of flavan-3-ol and flavonol in the US diet. J Nutr 138(8):1543S–1547S

    CAS  PubMed  Google Scholar 

  • Stangl V, Lorenz M, Stangl K (2006) The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res 50(2):218–228

    CAS  PubMed  Google Scholar 

  • Steptoe A, Gibson EL, Vuononvirta R, Hamer M, Wardle J, Rycroft JA, Martin JF, Erusalimsky JD (2007) The effects of chronic tea intake on platelet activation and inflammation: a double-blind placebo controlled trial. Atherosclerosis 193(2):277–282

    CAS  PubMed  Google Scholar 

  • Tai Y, Wei C, Yang H, Zhang L, Chen Q, Deng W, Wei S, Zhang J, Fang C, Ho C (2015) Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera). BMC Plant Biol 15(1):190

    PubMed  PubMed Central  Google Scholar 

  • Tan L-Q, Wang L-Y, Xu L-Y, Wu L-Y, Peng M, Zhang C-C, Wei K, Bai P-X, Li H-L, Cheng H (2016) SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tree Genet Genomes 12(3):52

    Google Scholar 

  • Tanaka J (1996) RAPD linkage map of tea plant and the possibility of application in tea genetics and breeding. Tea Res J 84(Suppl):44–45

    Google Scholar 

  • Tea Board of India (2016–2017) 63rd Annual report

    Google Scholar 

  • US Food and Drug Administration (2011) Summary of qualified health claims subject to enforcement discretion. US Food and Drug Administration Home Page http://www.fda gov/Food/LabelingNutrition/LabelClaims/QualifiedHealthClaims/ucm07 3992

  • US National Cancer Institute (5 April 2016) Tea and Cancer Prevention: Strengths and Limits of the Evidence

    Google Scholar 

  • US National Library of Medicine (30 November 2017). MedlinePlus

    Google Scholar 

  • Varnam A, Sutherland J (1994) Beverages: technology, chemistry and microbiology, vol 2. Springer

    Google Scholar 

  • Vernarelli JA, Lambert JD (2013) Tea consumption is inversely associated with weight status and other markers for metabolic syndrome in US adults. Eur J Nutr 52(3):1039–1048

    CAS  PubMed  Google Scholar 

  • Visser T (1961) Interplanting in Tea 1. Effect of shade trees, weeds and bush crops. Tea Quart 32:69–82

    Google Scholar 

  • Wang H, Provan GJ, Helliwell K (2000) Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci Technol 11(4–5):152–160

    CAS  Google Scholar 

  • Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Nat Acad Sci 115(18):201719622

    Google Scholar 

  • Wight W (1962) Tea classification revised. Curr Sci 31(7):298–299

    Google Scholar 

  • Wiseman SA, Balentine DA, Frei B (1997) Antioxidants in tea. Crit Rev Food Sci Nutrit 37(8):705–718

    CAS  Google Scholar 

  • World Health Organization (1993) Guidelines for drinking-water quality, 1 recommendations, 2nd. WHO, Geneva

    Google Scholar 

  • Wright LP, Mphangwe NIK, Nyirenda HE, Apostolides Z (2000) Analysis of caffeine and flavan-3-ol composition in the fresh leaf of Camellia sinesis for predicting the quality of the black tea produced in Central and Southern Africa. J Sci Food Agric 80(13):1823–1830

    CAS  Google Scholar 

  • Wu Z-J, Li X-H, Liu Z-W, Xu Z-S, Zhuang J (2014) De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol 14(1):277

    PubMed  PubMed Central  Google Scholar 

  • Xia E-H, Zhang H-B, Sheng J, Li K, Zhang Q-J, Kim C, Zhang Y, Liu Y, Zhu T, Li W (2017) The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10(6):866–877

    CAS  PubMed  Google Scholar 

  • Yang Z, Baldermann S, Watanabe N (2013) Recent studies of the volatile compounds in tea. Food Res Int 53(2):585–599

    CAS  Google Scholar 

  • Zhang C-C, Wang L-Y, Wei K, Wu L-Y, Li H-L, Zhang F, Cheng H, Ni D-J (2016) Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics 17(1):359

    PubMed  PubMed Central  Google Scholar 

  • Zhou J-r, Chen Y-q, Sun Y, Ni D-j (2005) Studies on the Piling Technological Effects on Luyuan Yellow Tea [J]. Food Sci 11:021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sauren Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazra, A., Dasgupta, N., Sengupta, C., Bera, B., Das, S. (2019). Tea: A Worthwhile, Popular Beverage Crop Since Time Immemorial. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9151-5_22

Download citation

Publish with us

Policies and ethics