Skip to main content

Mechanism of Extrinsic and Intrinsic Self-healing in Polymer Systems

  • Chapter
  • First Online:
Multifunctional Epoxy Resins

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Self-healing materials, which can increase the lifespan of various types of products, have been researched quite intensively in recent decades. In general, self-healing polymers and composites are classified based on their mechanisms of action. While extrinsic systems depend on an external healing agent, the process takes place through reversible bonds or supramolecular interactions in intrinsic systems. In this chapter, the main mechanisms of self-healing epoxy systems, involving extrinsic and intrinsic approaches, autonomous and non-autonomous, are presented and discussed. Since the development of the first extrinsic self-healing epoxy systems, based on microcapsules and vascular networks, which are still the most studied approaches for coatings and composites, many new possibilities have been researched, especially systems involving intrinsic mechanisms. Among them, mechanisms of dynamic covalent networks based on thermally activated reversible Diels–Alder reactions and disulfide bonds, and photoreversible cross-linking have been considered. Furthermore, new trends in self-healing processes concerning vitrimers, non-covalent supramolecular systems, shape memory-assisted self-healing, and bio-based epoxy materials are introduced, looking forward to a wider range of possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409, 794–797 (2001)

    Article  CAS  Google Scholar 

  2. Wu, D.Y., Meure, S., Solomon, D.: Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci. 33, 479–522 (2008)

    Article  CAS  Google Scholar 

  3. Fainleib, A.M., Purikova, O.H.: Self-healing polymers: approaches of healing and their application. Polym. J. 41, 4–18 (2019)

    Article  Google Scholar 

  4. Zhang, F., Zhang, L., Yaseen, M., Huang, K.: A review on the self-healing ability of epoxy polymers. J. Appl. Polym. Sci. 138, e50260 (2021)

    Article  Google Scholar 

  5. Thakur, V.K., Kessler, M.R.: Self-healing polymer nanocomposite materials: a review. Polymer 69, 369–383 (2015)

    Article  CAS  Google Scholar 

  6. Kirkby, E.L., et al.: Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50, 5533–5538 (2009)

    Article  CAS  Google Scholar 

  7. Trask, R.S., Williams, H.R., Bond, I.P.: Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim. 2, 1–9 (2007)

    Article  Google Scholar 

  8. Trask, R.S., Bond, I.P.: Bioinspired engineering study of Plantae vascules for self-healing composite structures. J. R. Soc. Interface 7, 921–931 (2010)

    Article  CAS  Google Scholar 

  9. Cremaldi, J.C., Bhushan, B.: Bioinspired self-healing materials: lessons from nature. Beilstein J. Nanotechnol. 9, 907–935 (2018)

    Article  CAS  Google Scholar 

  10. Pang, J.W.C., Bond, I.P.: A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol. 65, 1791–1799 (2005)

    Article  CAS  Google Scholar 

  11. Wang, Y., Pham, D.T., Ji, C.: Self-healing composites: a review. Cogent Eng. 2, 1075686 (2015)

    Google Scholar 

  12. Yuan, Y.C., Yin, T., Rong, M.Z., Zhang, M.Q.: Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. eXPRESS Polym. Lett. 2, 238–250 (2008)

    Google Scholar 

  13. Kessler, M.R., Sottos, N.R., White, M.R.: Self-healing structural composite materials. Compos. Part A, Appl. Sci. Manuf. 34, 743–753 (2003)

    Google Scholar 

  14. Bond, I.P., Trask, R.S., Williams, H.R.: Self-healing fiber-reinforced polymer composites. MRS Bull. 33, 770–774 (2008)

    Article  CAS  Google Scholar 

  15. Kanu, N.J., Gupta, E., Vates, U.K., Singh, G.K.: Self-healing composites: a state-of-the-art review. Compos. A: Appl. Sci. Manuf. 121, 474–486 (2019)

    Article  CAS  Google Scholar 

  16. Nosonovsky, M., Rohatgi, P.: Biomimetics in Materials Science: Self-healing, Self-lubricating, and Self-cleaning Materials, vol. 152. Springer Series in Materials Science. Springer (2011)

    Google Scholar 

  17. Jin, H., Mangun, C.L., Stradley, D.S., Moore, J.S., Sottos, N.R., White, S.R.: Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer 53, 581–587 (2012)

    Article  CAS  Google Scholar 

  18. Brown, E.N., Sottos, N.R., White, S.R.: Fracture testing of a self-healing polymer composite. Exp. Mech. 42, 372–379 (2002)

    Article  CAS  Google Scholar 

  19. Safaei, F., Khorasani, S.N., Rahnama, H., Neisiany, R.E., Koochaki, M.S.: Single microcapsules containing epoxy healing agent used for development in the fabrication of cost efficient self-healing epoxy coating. Prog. Org. Coat. 114, 40–46 (2018)

    Article  CAS  Google Scholar 

  20. Guadagno, L., Longo, P., Raimondo, M., Naddeo, C., Mariconda, A., Vittoria, V., Iannuzzo, G., Russo, S.: Use of Hoveyda–Grubbs’ second generation catalyst in self-healing epoxy mixtures. Compos. B. Eng. 41, 296–301 (2011)

    Article  Google Scholar 

  21. Jin, H., Miller, G.M., Pety, S.J., Griffin, A.S., Stradley, D.S., Roach, D., Sottos, N.R.: Fracture behavior of a self-healing, toughened epoxy adhesive. Int. J. Adhes. Adhes. 44, 157–165 (2013)

    Article  CAS  Google Scholar 

  22. Mcilroy, D.A., Blaiszik, B.J., Caruso, M.M., White, S.R., Moore, J.S., Sottos, N.R.: Microencapsulation of a reactive liquid-phase amine for self-healing epoxy composites. Macromolecules 43, 1855–1859 (2010)

    Article  CAS  Google Scholar 

  23. Caruso, M.M., Blaiszik, B.J., Jin, H., Schelkopf, S.R., Stradley, D.S., Sottos, N.R., White, S.R., Moore, J.S.: Robust, double-walled microcapsules for self-healing polymeric materials. Appl. Mater. Interfaces 2, 1195–1199 (2010)

    Article  CAS  Google Scholar 

  24. Weihermann, W.R.K., Meier, M.M., Pezzin, S.H.: Microencapsulated amino-functional polydimethylsiloxane as autonomous external self-healing agent for epoxy systems. J. Appl. Polym. Sci. 136, 47627 (2019)

    Article  Google Scholar 

  25. Cho, S.H., White, S.R., Braun, P.V.: Self-healing polymer coatings. Adv. Mater. 21, 645–649 (2009)

    Article  CAS  Google Scholar 

  26. Jackson, A.C., Bartelt, J.A., Braun, P.V.: Transparent self-healing polymers based on encapsulated plasticizers in a thermoplastic matrix. Adv. Funct. Mater. 21, 4705–4711 (2011)

    Article  CAS  Google Scholar 

  27. Celestine, A.-D.N., Sottos, N.R., White, S.R.: Autonomic healing of PMMA via microencapsulated solvent. Polymer 69, 241–248 (2015)

    Article  CAS  Google Scholar 

  28. Wang, H.P., Yuan, Y.C., Rong, M.Z., Zhang, M.Q.: Self-healing of thermoplastics via living polymerization. Macromolecules 43, 595–598 (2010)

    Article  Google Scholar 

  29. Chen, Y., Kushner, A.M., Williams, G.A., Guan, Z.: Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012)

    Article  CAS  Google Scholar 

  30. Utrera-Barrios, S., Verdejo, R., López-Manchado, M.A., Hernández Santana, M.: Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater. Horiz. 7, 2882–2902 (2020)

    Article  CAS  Google Scholar 

  31. Yu, K., Xin, A., Feng, Z., Lee, K.H., Wang, Q.: Mechanics of self-healing thermoplastic elastomers. J. Mech. Phys. Solids 137, 103831 (2020)

    Article  CAS  Google Scholar 

  32. Zwaag, S.V.D.: An Introduction to Material Design Principles: Damage Prevention Versus Damage Management, pp. 2–19 (R. Hull, R. M. Osgood Jr., J. Parisi, & H. Warlimont, Orgs.). Springer (2007)

    Google Scholar 

  33. Jackson, M.D., et al.: Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. Proc. Natl. Acad. Sci. U. S. A. 111, 18484–18489 (2014)

    Article  CAS  Google Scholar 

  34. De Rooij M., Van Tittelboom K., De Belie N., Schlangen E.: Self-Healing Phenomena in Cement-Based Materials. RILEM State-of-the-Art Reports, vol. 11. Springer Netherlands (2011)

    Google Scholar 

  35. Raghavan, J., Wool, R.: Interfaces in repair, recycling, joining and manufacturing of polymers and polymer composites. J. Appl. Polym. Sci. 71, 775–785 (1999)

    Article  CAS  Google Scholar 

  36. Dry, C.: Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 35, 263–264 (1996)

    Article  Google Scholar 

  37. Wang, P.P., Lee, S., Harmon, J.P.: Ethanol-induced crack healing in poly(methyl methacrylate). J. Polym. Sci. B Polym. Phys. 32, 1217–1227 (1994)

    Google Scholar 

  38. Lin, C.B., Lee, S.B., Liu, K.S.: Methanol-induced crack healing in poly(methyl methacrylate). Polym. Eng. Sci. 30, 1399–1406 (1990)

    Article  CAS  Google Scholar 

  39. Jud, K., Kausch, H.H., Williams, J.G.: Fracture mechanics studies of crack healing and welding of polymers. J. Mater. Sci. 16, 204–210 (1981)

    Article  CAS  Google Scholar 

  40. Toohey, K.S., et al.: Self-healing materials with microvascular networks. Nat. Mater. 6, 581–585 (2007)

    Article  CAS  Google Scholar 

  41. Xiao, D.S., Yuan, Y.C., Rong, M.Z.: Self-healing epoxy based on cationic chain polymerization. Polymer 50, 2967–2975 (2009)

    Article  CAS  Google Scholar 

  42. Samadzadeh, M., Hatami Boura, S., Peikari, M., Kasiriha, S.M., Ashrafi, A.: A review on self-healing coatings based on micro/nanocapsules. Prog. Org. Coat. 68, 159–164 (2010)

    Article  CAS  Google Scholar 

  43. Rule, J.D., Sottos, N.R., White, S.R.: Effect of microcapsule size on the performance of self-healing polymers. Polymer 48, 3520–3529 (2007)

    Article  CAS  Google Scholar 

  44. Urdl, K., Kandelbauer, A., Kern, W., Müller, U., Thebault, M., Zikulnig-Rusch, E.: Self-healing of densely crosslinked thermoset polymers—a critical review. Prog. Org. Coat. 104, 232–249 (2017)

    Article  CAS  Google Scholar 

  45. Yuan, L., Gu, A., Liang, G.: Preparation and properties of poly(urea–formaldehyde) microcapsules filled with epoxy resins. Mater. Chem. Phys. 110, 417–425 (2008)

    Article  CAS  Google Scholar 

  46. Yao, Y., Xiao, M., Liu, W.: A short review on self-healing thermoplastic polyurethanes. Macromol. Chem. Phys. 222, 2100002 (2021)

    Article  CAS  Google Scholar 

  47. Bekas, D.G., Tsirka, K., Baltzis, D., Paipetis, A.S.: Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos. B. Eng. 87, 92–119 (2016)

    Article  CAS  Google Scholar 

  48. Lendlein, A., Kelch, S.: Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002)

    Article  CAS  Google Scholar 

  49. Wang, X., Zhao, J., Chen, M., Ma, L., Zhao, X., Dang, Z.M., et al.: Improved self-healing of polyethylene/carbon black nanocomposites by their shape memory effect. J. Phys. Chem. B 117, 1467–1474 (2013)

    Article  CAS  Google Scholar 

  50. Hornat, C.C., Urban, M.W.: Shape memory effects in self-healing polymers. Prog. Polym. Sci. 102, 101208 (2020)

    Article  CAS  Google Scholar 

  51. Habault, D., Zhang, H., Zhao, Y.: Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42, 7244–7256 (2013)

    Article  CAS  Google Scholar 

  52. Kong, D., Li, J., Guo, A., Zhang, X., Xiao, X.: Self-healing high temperature shape memory polymer. Eur. Polym. J. 120, 109279 (2019)

    Article  Google Scholar 

  53. Burattini, S., Colquhoun, H.M., Greenland, B.W., Hayes, W.: A novel self-healing supramolecular polymer system. Faraday Discuss. 143, 251–264 (2009)

    Article  CAS  Google Scholar 

  54. Fox, J., Wie, J.J., Greenland, B.W., Burattini, S., Hayes, W., Colquhoun, H.M., et al.: Highstrength, healable, supramolecular polymer nanocomposites. J. Am. Chem. Soc. 134, 5362–5368 (2012)

    Article  CAS  Google Scholar 

  55. Coulibaly, S., Roulin, A., Balog, S., Biyani, M.V., Foster, E.J., Rowan, S.J., et al.: Reinforcement of optically healable supramolecular polymers with cellulose nanocrystals. Macromolecules 47, 152–160 (2014)

    Article  CAS  Google Scholar 

  56. van Gemert, G.M.L., Peeters, J.W., Söntjens, S.H.M., Janssen, H.M., Bosman, A.W.: Self-healing supramolecular polymers in action. Macromol. Chem. Phys. 213, 234–242 (2012)

    Article  Google Scholar 

  57. Kuhl, N., Bode, S., Hager, M.D., Schubert, U.S.: U.S. Schubert, Self-healing polymers based on reversible covalent bonds. In: Hager M., van der Zwaag S., Schubert U. (eds) Self-healing Materials. Advances in Polymer Science, vol 273. Springer, Cham (2015)

    Google Scholar 

  58. Scheltjens, G., Diaz, M.M., Brancart, J., Van Assche, G., Van Mele, B.: A self-healing polymer network based on reversible covalent bonding. React. Funct. Polym. 73, 413–420 (2013)

    Article  CAS  Google Scholar 

  59. Cho, S., Hwang, S.Y., Oh, D.X., Park, J.: Recent progress in self-healing polymers and hydrogels based on reversible dynamic B–O bonds: boronic/boronate esters, borax, and benzoxaborole. J. Mater. Chem. A 9, 14630–14655 (2021)

    Article  CAS  Google Scholar 

  60. Li, C.-H., Zuo, J.-L.: Self-healing polymers based on coordination bonds. Adv. Mater. 32, 1903762 (2020)

    CAS  Google Scholar 

  61. Yang, Y., Urban, M.W.: Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013)

    Article  CAS  Google Scholar 

  62. Garcia, S.J.: Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur. Polym. J. 53, 118–125 (2014)

    Google Scholar 

  63. Hager, M.D., Zechel, S.: Chapter 3—Self-Healing Polymers: from General Basics to Mechanistic Aspects. In: Thomas, S., Surendran, A. (eds.) Self-Healing Polymer-Based Systems, Elsevier, pp. 75–94 (2020)

    Google Scholar 

  64. Deng, Y., et al.: Self-healing ability and application of impact hardening polymers. Polym. Test. 76, 43–53 (2019)

    Article  CAS  Google Scholar 

  65. Deng, Z., Hu, T., Lei, Q., He, J., Ma, P.X., Guo, B.: Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing. ACS Appl. Mater. Interfaces 11, 6796–6808 (2019)

    Article  CAS  Google Scholar 

  66. Bergman, S.D., Wudl, F.: Mendable polymers. J. Mater. Chem. 18, 41–62 (2008)

    Article  CAS  Google Scholar 

  67. Huang, X., Wang, X., Shi, C., Liu, Y., Wei, Y.: Research on synthesis and self-healing properties of interpenetrating network hydrogels based on reversible covalent and reversible non-covalent bonds. J. Polym. Res. 28, 1 (2021)

    Article  Google Scholar 

  68. Li, X., Yu, R., He, Y., Zhang, Y., Yang, X., Zhao, X., Huang, W.: Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Lett. 8, 1511–1516 (2019)

    Article  CAS  Google Scholar 

  69. Li, Y., et al.: Novel polyurethane with high self-healing efficiency for functional energetic composites. Polym. Test. 76, 82–89 (2019)

    Article  CAS  Google Scholar 

  70. Yang, Y., et al.: Defect-targeted self-healing of multiscale damage in polymers. Nanoscale 12, 3605–3613 (2020)

    Article  CAS  Google Scholar 

  71. Mirmohseni, A., et al.: Self-healing waterborne polyurethane coating by pH-dependent triggered-release mechanism. J. Appl. Polym. Sci. 136, 47082 (2019)

    Article  Google Scholar 

  72. Li, H., et al.: Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids Surf. A Physicochem. Eng. Asp. 518, 181–187 (2017)

    Google Scholar 

  73. Tan, Y.J., Susanto, G.J., Ali, H.P.A., Tee, B.C.K.: Progress and roadmap for intelligent self-healing materials in autonomous robotics. Adv. Mater. 33, 2002800 (2021)

    Article  CAS  Google Scholar 

  74. Zhu, D.Y., Rong, M.Z., Zhang, M.Q.: Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog. Polym. Sci. 49, 176–215 (2014)

    Google Scholar 

  75. Da Costa, S.F., Zuber, M., Zakharova, M., Mikhaylov, A., Baumbach, T., Kunka, D., Pezzin, S.H.: Self-healing triggering mechanism in epoxy-based material containing microencapsulated amino-polysiloxane. Nano Select 3, 577–593 (2022)

    Article  Google Scholar 

  76. Romero-Sabat, G., Gago-Benedí, E., Rovira, J.J.R., González-Gálvez, D., Mateo, A., Medel, S., Chivite, A.T.: Development of a highly efficient extrinsic and autonomous self-healing polymeric system at low and ultra-low temperatures for high-performance applications. Compos. Part A Appl. Sci. Manuf. 145, 106335 (2021)

    Google Scholar 

  77. I.P.S. Qamar, N.R. Sottos, R.S. Trask, Grand challenges in the design and manufacture of vascular self-healing. Multifunct. Mater. 3, 013001 (2020)

    Google Scholar 

  78. Ullah, H., Azizli, K.A.M., Man, Z.B., Ismail, M.B.C., Khan, M.I.: The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: a review. Polym. Rev. 56, 429–485 (2016)

    Article  CAS  Google Scholar 

  79. Das, R., Melchior, C., Karumbaiah, K.M.: 11—Self-healing composites for aerospace applications. In: Rana, S., Fangueiro, R. (eds.) Advanced Composite Materials for Aerospace Engineering, Woodhead Publishing, pp. 333–364 (2016)

    Google Scholar 

  80. Rahman, M.W., Shefa, N.R.: Minireview on self-healing polymers: versatility, application, and prospects. Adv. Polym. Technol. 2021, 7848088 (2021)

    Article  Google Scholar 

  81. Tiarks, F., Landfester, K., Antonietti, M.: Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17, 908–918 (2001)

    Article  CAS  Google Scholar 

  82. Brown, E.N., et al.: In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J. Microencapsul. 20, 719–730 (2003)

    Article  CAS  Google Scholar 

  83. Yuan, L., et al.: Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer 47, 5338–5349 (2006)

    Article  CAS  Google Scholar 

  84. Liu, X., Zhang, H., Wang, J., Wang, Z., Wang, S.: Preparation of epoxy microcapsule based self-healing coatings and their behavior. Surf Coat. Technol. 206, 4976–4980 (2012)

    Article  CAS  Google Scholar 

  85. Cho, S.H., et al.: Polydimethylsiloxane-based self-healing materials. Adv. Mater. 18, 997–1000 (2006)

    Article  CAS  Google Scholar 

  86. Jin, H.: Self-healing of High Temperature Cured Epoxy and Composites. PhD Thesis. University of Illinois at Urbana-Champaign, Illinois (2012)

    Google Scholar 

  87. Caruso, M.M., Delafuente, D.A., Ho, V., Sottos, N.R., Moore, J.S., White, S.R.: Solvent-promoted self-healing in epoxy materials. Macromolecules 40, 8830–8832 (2007)

    Article  CAS  Google Scholar 

  88. Knop, W.R., Meier, M.M., Pezzin, S.H.: Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with dicyclopentadiene. Matéria (Rio J.) 19, 266–273 (2014)

    Article  Google Scholar 

  89. Blaiszik, B.J., Sottos, N.R., White, S.R.: Nanocapsules for self-healing materials. Compos. Sci. Technol. 68, 978–986 (2008)

    Article  CAS  Google Scholar 

  90. Brown, E.N., White, S.R., Sottos, N.R.: Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci. 39, 1703–1710 (2004)

    Article  CAS  Google Scholar 

  91. Kessler, M.R., White, S.R.: Cure kinetics of the ring-opening metathesis polymerization of dicyclopentadiene. J. Polym. Sci. A: Polym. Chem. 40, 2373–2383 (2002)

    Article  CAS  Google Scholar 

  92. Skipor, A., Scheifer, S., Olson, B.: Self-healing Polymer Compositions (Motorola Inc. U) US: 2004007784-A1 (2004)

    Google Scholar 

  93. Liao, L., Zhang, W., Xin, Y., Wang, H.M., Zhao, Y., Li, W.: Preparation and characterization of microcapsule containing epoxy resin and its self-healing performance of anticorrosion covering material. Chin. Sci. Bull. 56, 439–443 (2011)

    Article  CAS  Google Scholar 

  94. Lang, S., Zhou, Q.: Synthesis and characterization of poly(urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development. Prog. Org. Coat. 105, 99–110 (2017)

    Article  CAS  Google Scholar 

  95. Siva, T., Sathiyanarayanan, S.: Self healing coatings containing dual active agent loaded urea formaldehyde (UF) microcapsules. Prog. Org. Coat. 82, 57–67 (2015)

    Article  CAS  Google Scholar 

  96. Schlemper, D.M., Pezzin, S.H.: Self-healing epoxy coatings containing microcapsules filled with different amine compounds - a comparison study. Prog. Org. Coat. 156, 106258 (2021)

    Article  CAS  Google Scholar 

  97. Huang, M., Yang, J.: Facile microencapsulation of HDI for self-healing anticorrosion coatings. J. Mater. Chem. 21, 11123–11130 (2011)

    Article  CAS  Google Scholar 

  98. Henry, J.J.M.: Nano-based self-healing anti-corrosion coating. WO2012178193 (2012)

    Google Scholar 

  99. Mangun, C.L., Mader, A.C., Sottos, N.R., White, S.R.: Self-healing of a high temperature cured epoxy using poly(dimethylsiloxane) chemistry. Polymer 51, 4063–4068 (2010)

    Article  CAS  Google Scholar 

  100. El-Hadek, M.A., Tippur, H.V.: Simulation of porosity by microballoon dispersion in epoxy and urethane: mechanical measurements and models. J. Mater. Sci. 37, 1649–1660 (2002)

    Article  CAS  Google Scholar 

  101. Stappen, J.V., Bultreys, T., Gilabert, F.A., Hillewaere, X.K., Gómez, D.G., Tittelboomd, K.V., Dhaene, J., Belie, N.D., Paepegem, W.V., Prez, F.E.D., Cnudde, V.: The microstructure of capsule containing self-healing materials: a micro-computed tomography study. Mater. Charact. 119, 99–109 (2016)

    Article  Google Scholar 

  102. Mayo, C.S., Stevenson, A.W., Wilkins, S.W.: In-line phase-contrast x-ray imaging and tomography for materials science. Materials 5, 937–965 (2012)

    Article  CAS  Google Scholar 

  103. Mayo, C.S., Stevenson, A.W., Wilkins, S.W., Gao, D., Mookhoek, S., Meure, S., Hughes, T., Mardel, J.: Phase-contrast tomography for quantitative characterisation of self-healing polymers. Mater. Sci. Forum. 654, 2322–2325 (2010)

    Article  Google Scholar 

  104. Mookhoek, S.D., Mayo, S.C., Hughes, A.E., Furman, S.A., Fischer, H.R., van der Zwaag, S.: Applying SEM-based x-ray microtomography to observe self-healing in solvent encapsulated thermoplastic materials. Adv. Eng. Mater. 12, 228–234 (2010)

    Article  CAS  Google Scholar 

  105. Peñas-Caballero, M., Santana, M.H., Verdejo, R., Lopez-Manchado, M.A.: Measuring self-healing in epoxy matrices: The need for standard conditions. React. Funct. Polym. 161, 104847 (2021)

    Article  Google Scholar 

  106. Mikhaylov, A., Zakharova, M., Vlnieska, V., Khanda, A., Bremer, S., Zuber, M., Pezzin, S.H., Kunka, D.: Inverted Hartmann mask made by deep X-ray lithography for single-shot multi-contrast X-ray imaging with laboratory setup. Opt. Express 30, 8494–8509 (2022)

    Article  CAS  Google Scholar 

  107. Wei, H., Wang, Y., Guo, J., Shen, N.Z., Jiang, D., Zhang, X., Yan, X., Zhu, J., Wang, Q., Shao, L., Lin, H., Wei, S., Guo, Z.: Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem. A 3, 469–480 (2015)

    Article  CAS  Google Scholar 

  108. Bagale, U.D., Sonawane, S.H.: Synthesis of nanocapsules using safflower oil for self-healing material. Nanomater. Energy 8, 42–50 (2019)

    Article  Google Scholar 

  109. Olugebefola, S.C., Aragón, A.M., Hansen, C.J., Hamilton, A.R., Kozola, B.D., Wu, W., et al.: Polymer microvascular network composites. J. Compos. Mater. 44, 2587–2603 (2010)

    Article  CAS  Google Scholar 

  110. Motuku, M., Vaidya, U.K., Janowski, G.M.: Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater. Struct. 8, 623–638 (1999)

    Article  CAS  Google Scholar 

  111. Bleay, S.M., Loader, C.B., Hawyes, V.J., Humberstone, L., Curtis, P.T.: A smart repair system for polymer matrix composites. Compos. Part A Appl. Sci. Manuf. 32, 1767–76 (2001)

    Google Scholar 

  112. Trask, R.S., Bond, I.P.: Biomimetic self-healing of advanced composite structures using hollow glass fibers. Smart Mater. Struct. 15, 704–710 (2006)

    Article  CAS  Google Scholar 

  113. Williams, H.R., Trask, R.S., Bond, I.P.: Self-healing composite sandwich structures. Smart Mater. Struct. 16, 1198–1207 (2007)

    Article  Google Scholar 

  114. Dry, C.M.: Self-repairing, reinforced matrix materials (Individual U). US:7022179-B1 (2006)

    Google Scholar 

  115. Sinha-Ray, S., Pelot, D.D., Zhou, Z.P., Rahman, A., Wu, X.F., Yarin, A.L.: Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J. Mater. Chem. 22, 9138–9146 (2012)

    Article  CAS  Google Scholar 

  116. Almutairi, M.D., Aria, A.I., Thakur, V.K., Khan, M.A.: Self-healing mechanisms for 3D-printed polymeric structures: from lab to reality. Polymers 12, 1534 (2020)

    Article  CAS  Google Scholar 

  117. Therriault, D., Shepherd, R.F., White, S.R., Lewis, J.A.: Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Adv. Mater. 17, 395–399 (2005)

    Article  CAS  Google Scholar 

  118. Toohey, K.S., Hansen, C.J., Lewis, J.A., White, S.R., Sottos, N.R.: Delivery of two-part self-healing chemistry via microvascular networks. Adv. Funct. Mater. 19, 1399–1405 (2009)

    Article  CAS  Google Scholar 

  119. Hansen, C.J., Wu, W., Toohey, K.S., Sottos, N.R., White, S.R., Lewis, J.A.: Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21, 4143–4147 (2009)

    Article  CAS  Google Scholar 

  120. Aissa, B., Haddad, E., Jamroz, W., Hassani, S., Farahani, R.D., Merle, P.G., et al.: Micromechanical characterization of single-walled carbon nanotube reinforced ethylidene norbornene nanocomposites for self-healing applications. Smart Mater. Struct. 21, 105028 (2012)

    Article  Google Scholar 

  121. Huang, C.Y., Trask, R.S., Bond, I.P.: Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature. J. R. Soc. Interface 7, 1229–1241 (2010)

    Article  CAS  Google Scholar 

  122. Norris, C.J., Bond, I.P., Trask, R.S.: Interactions between propagating cracks and bioinspired self-healing vascules embedded in glass fibre reinforced composites. Compos. Sci. Technol. 71, 847–853 (2011)

    Article  CAS  Google Scholar 

  123. Kousourakis, A., Bannister, M.K., Mouritz, A.P.: Tensile and compressive properties of polymer laminates containing internal sensor cavities. Compos. Part A Appl. Sci. Manuf. 39, 1394–1403 (2008)

    Google Scholar 

  124. Bekas, D.G., Baltzis, D., Paipetis, A.S.: Nano-reinforced polymeric healing agents for vascular self-repairing composites. Mater. Des. 116, 538–544 (2017)

    Article  CAS  Google Scholar 

  125. Norris, C.J., White, J.A.P., McCombe, G., Chatterjee, P., Bond, I.P., Trask, R.S.: Autonomous stimulus triggered self-healing in smart structural composites. Adv. Funct. Mater. 21, 3624–3633 (2011)

    Article  CAS  Google Scholar 

  126. Luterbacher, R., Trask, R.S., Bond, I.P.: Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications. Smart Mater. Struct. 25, 015003 (2016)

    Article  Google Scholar 

  127. Patrick, J.F., Hart, K.R., Krull, B.P., Diesendruck, C.E., Moore, J.S., White, S.R., Sottos, N.R.: Continuous self-healing life cycle in vascularized structural composites. Adv. Mater. 26, 4302–4308 (2014)

    Article  CAS  Google Scholar 

  128. Gergely, R.C.R., Pety, S.J., Krull, B.P., Patrick, J.F., Doan, T.Q., Coppola, A.M., Thakre, P.R., Sottos, N.R., Moore, J.S., White, S.R.: Multidimensional vascularized polymers using degradable sacrificial templates. Adv. Funct. Mater. 25, 1043–1052 (2015)

    Article  CAS  Google Scholar 

  129. Cuvellier, A., Torre-Muruzabal, A., Van Assche, G., De Clerck, K., Rahier, H.: Selection of healing agents for a vascular self-healing application. Polym. Test. 62, 302–310 (2017)

    Article  CAS  Google Scholar 

  130. Yamaguchi, M., Ono, S., Terano, M.: Self-repairing property of polymer network with dangling chains. Mater. Lett. 61, 1396–1399 (2007)

    Article  CAS  Google Scholar 

  131. Chian, W., Timm, D.C.: Chemical/mechanical analyses of anhydride-cured thermosetting epoxys: DGEBA/NMA/BDMA. Macromolecules 37, 8098–8109 (2004)

    Article  CAS  Google Scholar 

  132. Outwater, J.O., Gerry, D.J.: On the fracture energy, rehealing velocity and refracture energy of cast epoxy resin. J. Adhes. 1, 290–298 (1969)

    Article  Google Scholar 

  133. Kim, Y.H., Wool, R.P.: A theory of healing at a polymer–polymer interface. Macromolecules 16, 1115–1120 (1983)

    Article  CAS  Google Scholar 

  134. Pascault J.-P., Williams R.J.J.: Epoxy Polymers: New Materials and Innovations, pp. 1–12. Wiley-VCH, New Jersey (2010)

    Google Scholar 

  135. Fejos, M., Molnar, K., Karger-Kocsis, J.: Epoxy/polycaprolactone systems with triple-shape memory effect: electrospun nanoweb with and without graphene versus cocontinuous morphology. Materials 6, 4489–4504 (2013)

    Article  Google Scholar 

  136. Wei, H., Yao, Y., Liu, Y., Leng, J.: A dual-functional polymeric system combining shape memory with self-healing properties. Compos B. 83, 7–13 (2015)

    Article  CAS  Google Scholar 

  137. Yao, Y., Wang, J., Lu, H., Xu, B., Fu, Y., Liu, Y., Leng, J.: Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater. Struct. 25, 015021 (2016)

    Article  Google Scholar 

  138. Zako, M., Takano, N.: Intelligent material systems using epoxy particles to repair microcracks and delamination damage in GFRP. J. Intell. Mater. Syst. Struct. 10, 836–841 (1999)

    Article  Google Scholar 

  139. Jones, F., Hayes, S.A.: Self-healing composite material. University of Sheffeld G, WO:2005066244-A2 (2005)

    Google Scholar 

  140. Meure, S., Varley, R.J., Dong, Y.W., Mayo, S., Nairn, K., Furman, S.: Confirmation of the healing mechanism in a mendable EMAA-epoxy resin. Eur. Polym. J. 48, 524–531 (2012)

    Article  CAS  Google Scholar 

  141. Hayes, S.A., Jones, F.R., Marshiya, K., Zhang, W.: A self-healing thermosetting composite material. Compos. Part A Appl. Sci. Manuf. 38, 1116–1120 (2007)

    Google Scholar 

  142. Luo, X., Ou, R., Eberly, D.E., Singhal, A., Viratyaporn, W., Mather, P.T.: A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. Appl. Mater. Interfaces 1, 612–620 (2009)

    Article  CAS  Google Scholar 

  143. Hayes, S.A., Zhang, W., Branthwaite, M., Jones, F.R.: Self-healing of damage in fibre-reinforced polymer–matrix composites. J. R. Soc. Interface 4, 381–387 (2007)

    Article  CAS  Google Scholar 

  144. Pingkarawat, K., Wang, C.H., Varley, R.J., Mouritz, A.P.: Self-healing of delamination cracks in mendable epoxy matrix laminates using poly[ethylene-co-(methacrylic acid)] thermoplastic. Compos. Part A Appl. Sci. Manuf. 43, 1301–1307 (2012)

    Article  CAS  Google Scholar 

  145. Pingkarawat, K., Bhat, T., Craze, D.A., Wang, C.H., Varley, R.J., Mouritz, A.P.: Healing of carbon fibre–epoxy composites using thermoplastic additives. Polym Chem 4, 5007–5015 (2013)

    Article  CAS  Google Scholar 

  146. Pingkarawat, K., Dell’Olio, C., Varley, R.J., Mouritz, A.P.: An efficient healing agent for high temperature epoxy composites based upon tetra-glycidyl diamino diphenyl methane. Compos. Part A-Appl. Sci. Manuf. 78, 201–210 (2015)

    Article  CAS  Google Scholar 

  147. Thostenson, E.T., Chou, T.W.: Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Adv. Mater. 18, 2837–2841 (2006)

    Article  CAS  Google Scholar 

  148. Guo, S., Meshot, E.R., Kuykendall, T., et al.: Nanofluidic transport through isolated carbon nanotube channels: advances, controversies, and challenges. Adv. Mater. 27, 5726–5737 (2015)

    Article  CAS  Google Scholar 

  149. Kausar, A.: Self-healing polymer/carbon nanotube nanocomposite: a review. J. Plast. Film Sheeting 37, 160–181 (2021)

    Article  CAS  Google Scholar 

  150. Sriram, S.R.: Development of Self-healing Polymer Composites and Photoinduced Ring Opening Metathesis Polymerisation. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, USA (2002)

    Google Scholar 

  151. Chen, X., Wudl, F., Mal, A.K., Shen, H., Nutt, S.R.: New thermally patchable highly cross-linked polymeric materials. Macromolecules 36, 1802–1807 (2003)

    Article  CAS  Google Scholar 

  152. Chen, X., Dam, M.A., Ono, K., Mal, A., Shen, H.B., Nutt, S.R., et al.: A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002)

    Article  CAS  Google Scholar 

  153. Liu, Y.L., Hsieh, C.Y.: Crosslinked epoxy materials exhibiting thermal remendablility and removal from multifunctional maleimide and furan compounds. J. Polym. Sci. Part A Polym. Chem. 44, 905–913 (2006)

    Google Scholar 

  154. Kuang, X., Liu, G., Dong, X., Liu, J., Xu, D.: Wang, Facile fabrication of fast recyclable and multiple self-healing epoxy materials through Diels-Alder adduct cross-linker. J. Polym. Sci. Part A 53, 2094–2103 (2015)

    Article  CAS  Google Scholar 

  155. Wudl, F., Chen, X.: Thermally Re-mendable Cross-linked Polymers. University of California U, US:2004014933-A1 (2004)

    Google Scholar 

  156. Harris, K.M., Rajagopalan, M.: Self healing Polymers in Sports Equipment (Acushnet Company U) US:2003032758-A1 (2003)

    Google Scholar 

  157. Plaisted, T.A., Amirkhizi, A.V., Arbelaez, D., Nemat-Nasser, S.C., Nemat-Nasser, S.: Self-healing structural composites with electromagnetic functionality. Smart Struct. Mater. SPIE-5054, 372–381 (2003)

    Google Scholar 

  158. Peterson, A.M., Jensen, R.E., Palmese, G.R.: Reversibly cross-linked polymer gels as healing agents for epoxy− amine thermosets. ACS Appl. Mater. Interfaces 1, 992–995 (2009)

    Article  CAS  Google Scholar 

  159. Peterson, A.M., Jensen, R.E., Palmese, G.R.: Room-temperature healing of a thermosetting polymer using the Diels−Alder reaction. ACS Appl. Mater. Interfaces 2, 1141–1149 (2010)

    Article  CAS  Google Scholar 

  160. Saegusa, T., Sada, K., Naka, A., Nomura, R., Saegusa, T.: Synthesis and redox gelation of disulfide-modified polyoxazoline". Macromolecules 26, 883–887 (1993)

    Article  Google Scholar 

  161. Lei, Z.Q., Xiang, H.P., Yuan, Y.J., Rong, M.Z., Zhang, M.Q.: Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater. 26, 2038–2046 (2014)

    Article  CAS  Google Scholar 

  162. Memon, H., Wei, Y.: Welding and reprocessing of disulfide-containing thermoset epoxy resin exhibiting behavior reminiscent of a thermoplastic. J. Appl. Polym. Sci. 137, 49541 (2020)

    Article  CAS  Google Scholar 

  163. Fengtao, Z., Zijian, G., Wenyan, W., Xingfeng, L., Baoliang, Z., Hepeng, Z., Qiuyu, Z.: Preparation of self-healing, recyclable epoxy resins and low-electrical resistance composites based on double-disulfide bond exchange. Compos. Sci. Technol. 167, 79–85 (2018)

    Article  Google Scholar 

  164. Si, H., Zhou, L., Wu, Y., Song, L., Kang, M., Zhao, X., Chen, M.: Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Compos. Part B 199, 108278 (2020)

    Article  CAS  Google Scholar 

  165. Di Mauro, C., Malburet, S., Graillot, A., Mija, A.: Recyclable, repairable, and reshapable (3R) thermoset materials with shape memory properties from bio-based epoxidized vegetable oils. ACS Appl. Bio Mater. 3, 8094–8104 (2020)

    Article  Google Scholar 

  166. De Luzuriaga, A.R., Martin, R., Markaide, N., Rekondo, A., Cabanero, G., Rodriguez, J., Odriozola, I.: Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 3, 241–247 (2016)

    Article  Google Scholar 

  167. Denissen, W., Winne, J.M., Du Prez, F.E.: Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7, 30–38 (2016)

    Article  CAS  Google Scholar 

  168. Scheutz, G.M., Lessard, J.J., Sims, M.B., Sumerlin, B.S.: Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 141, 16181–16196 (2019)

    Article  CAS  Google Scholar 

  169. Liu, T., Hao, C., Zhang, S., Yang, X., Wang, L., Han, J., Li, Y., Xin, J., Zhang, J.: A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry. Macromolecules 51, 5577–5585 (2018)

    Article  CAS  Google Scholar 

  170. Memon, H., Liu, H., Rashid, M.A., Chen, L., Jiang, Q., Zhang, L., Wei, Y., Liu, W., Qiu, Y.: Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules 53, 621–630 (2020)

    Article  CAS  Google Scholar 

  171. Memon, H., Wei, Y., Zhu, C.: Recyclable and reformable epoxy resins based on dynamic covalent bonds—present, past, and future. Polym. Test. 105, 107420 (2022)

    Article  CAS  Google Scholar 

  172. Radl, S., Kreimer, M., Griesser, T., Oesterreicher, A., Moser, A., Kern, W., Schlögl, S.: New strategies towards reversible and mendable epoxy based materials employing [4πs + 4πs] photocycloaddition and thermal cycloreversion of pendant anthracene groups. Polymer 80, 76–87 (2015)

    Article  CAS  Google Scholar 

  173. Hughes, T., Simon, George P., Saito, K.: Light-healable epoxy polymer networks via anthracene dimer scission of diamine crosslinker. ACS Appl. Mater. Interfaces 11, 19429–19443 (2019)

    Google Scholar 

  174. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C., et al.: Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008)

    Article  CAS  Google Scholar 

  175. Yan, T., Schröter, K., Herbst, F., Binder, W.H., Thurn-Albrecht, T.: What controls the structure and the linear and nonlinear rheological properties of dense, dynamic supramolecular polymer networks? Macromolecules 50, 2973–2985 (2017)

    Article  CAS  Google Scholar 

  176. Campanella, A., Döhler, D., Binder, W.H.: Self-healing in supramolecular polymers. Macromol. Rapid Commun. 39, 1700739 (2018)

    Article  Google Scholar 

  177. Seiffert, S., Sprakel, J.: Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 41, 909–930 (2012)

    Article  CAS  Google Scholar 

  178. Aida, T., Meijer, E.W., Stupp, S.I.: Functional supramolecular polymers. Science 335, 813–817 (2012)

    Article  CAS  Google Scholar 

  179. Sordo, F., Mougnier, S.-J., Loureiro, N., Tournilhac, F., Michaud, V.: Design of self-healing supramolecular rubbers with a tunable number of chemical cross-links. Macromolecules 48, 4394 (2015)

    Article  CAS  Google Scholar 

  180. Villani, M., Deshmukh, Y.S., Camlibel, C., Esteves, A.C.C., de With, G.: Superior relaxation of stresses and self-healing behavior of epoxy-amine coatings. RSC Adv. 6, 245–259 (2016)

    Article  CAS  Google Scholar 

  181. Guadagno, L., Vertuccio, L., Naddeo, C., Calabrese, E., Barra, G., Raimondo, M., Sorrentino, A., Binder, W.H., Michael, P., Rana, S.: Self-healing epoxy nanocomposites via reversible hydrogen bonding. Compos. Part B: Eng. 157, 1–13 (2019)

    Article  CAS  Google Scholar 

  182. Rodriguez, E.D., Luo, X., Mather, Patrick T.: Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 3, 152–161 (2011)

    Google Scholar 

  183. Luo, L., Zhang, F., Leng, J.: Shape memory epoxy resin and its composites: from materials to applications. AAAS Research 2022, 9767830 (2022)

    CAS  Google Scholar 

  184. Luo, X., Mather, P.T.: Shape memory assisted self-healing coating. ACS Macro Lett. 2, 152–156 (2013)

    Article  CAS  Google Scholar 

  185. Xiao, X., Xie, T., Cheng, Y.-T.: Self-healable graphene polymer composites. J Mater Chem 20, 3508–3514 (2010)

    Article  CAS  Google Scholar 

  186. Zhang, M.Q., Rong, M.Z.: Theoretical consideration and modeling of self-healing polymers. J. Polym. Sci. B Polym. Phys. 50, 229–241 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Henrique Pezzin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pezzin, S.H. (2023). Mechanism of Extrinsic and Intrinsic Self-healing in Polymer Systems. In: Hameed, N., Capricho, J.C., Salim, N., Thomas, S. (eds) Multifunctional Epoxy Resins. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-6038-3_4

Download citation

Publish with us

Policies and ethics