Skip to main content

Overview of the Development of L12 γ′-Strengthened Cobalt-Base Superalloys

  • Chapter
  • First Online:
Advanced Multicomponent Alloys

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

High-temperature technology is of major importance in many industrial applications, such as aircraft engines and land-based power generation gas turbines. Demands for high fuel and engine efficiency require the increasing service temperature of superalloys. The further development of widely used Ni-base superalloys hits a bottleneck due to the limitation of the melting point of Ni. In 2006, the discovery of γ/γ′ Co–Al–W alloys began a new era in the development history of high-temperature materials. Compared with Ni-base superalloys, the higher melting temperature by 50~150 °C, the greater creep resistance, and the comparative mechanical properties spotlight the research of novel γ/γ′ Co–Al–W-based alloys as one of the candidates for high-temperature materials for future generations of advanced propulsion systems. Despite the extraordinary improvement achieved in the various aspects of novel γ/γ′ Co–Al–W-based superalloys, several drawbacks still restrict the wide applications, such as metastable nature of γ′ precipitates, narrow γ/γ′ composition range, overhigh mass density, inferior medium–low-temperature strength. In this chapter, we review the current exploration of γ′-strengthened Co-base superalloys in view of these drawbacks, including phase stability of γ′ precipitates, γ′-solvus temperature, development of low-density γ/γ′ Co-base superalloys and CoNi-base superalloys, and high-temperature mechanical capability of γ/γ′ Co-base superalloys. Finally, the challenges and future research needs in the development of novel Co-base superalloys are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sims CT, Stoloff NS, Hagel WC (1987) Superalloy II. Wiley, New York

    Google Scholar 

  2. Reed RC (2008) The superalloys: fundamentals and applications. Cambridge university press

    Google Scholar 

  3. Pollock TM (2016) Alloy design for aircraft engines. Nat Mater 15:809–815

    Article  CAS  Google Scholar 

  4. Evans PC, Annunziata M (2012) Industrial internet: Pushing the boundaries of minds and machines, Technical Report, GE

    Google Scholar 

  5. Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide. ASM international

    Google Scholar 

  6. Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K (2006) Cobalt-base high-temperature alloys. Science 312:90

    Article  CAS  Google Scholar 

  7. Beltran A (1987) Cobalt-base alloys, Wiley-Interscience; Superalloys II--high temperature materials for aerospace and industrial power, Wiley, pp 135–163

    Google Scholar 

  8. Xue F, Zhou HJ, Ding XF, Wang ML, Feng Q (2013) Improved high temperature γ′ stability of Co–Al–W-base alloys containing Ti and Ta. Mater Lett 112:215–218

    Article  CAS  Google Scholar 

  9. Xu W, Wang Y, Wang C, Liu X, Liu Z-K (2015) Alloying effects of Ta on the mechanical properties of γ’ Co3(Al, W): a first-principles study. Scr Mater 100:5–8

    Article  CAS  Google Scholar 

  10. Zhou HJ, Xue F, Chang H, Feng Q (2018) Effect of Mo on microstructural characteristics and coarsening kinetics of γ′ precipitates in Co–Al–W–Ta–Ti alloys. J Mater Sci Technol 34:799–805

    Article  CAS  Google Scholar 

  11. Suzuki A, Pollock TM (2008) High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Mater 56:1288–1297

    Article  CAS  Google Scholar 

  12. Titus MS, Suzuki A, Pollock TM (2012) High Temperature creep of new L1(2)-containing cobalt-base superalloys. Superalloys 2012:823–832

    Article  Google Scholar 

  13. Tsunekane M, Suzuki A, Pollock TM (2011) Single-crystal solidification of new Co–Al–W-base alloys. Intermetallics 19:636–643

    Article  CAS  Google Scholar 

  14. Lass EA, Williams ME, Campbell CE, Moon KW, Kattner UR (2014) γ′ phase stability and phase equilibrium in ternary Co–Al–W at 900 ℃. J Phase Equilib Diffus 35:711–723

    Article  CAS  Google Scholar 

  15. Omori T, Oikawa K, Sato J, Ohnuma I, Kattner UR, Kainuma R, Ishida K (2013) Partition behavior of alloying elements and phase transformation temperatures in Co–Al–W-base quaternary systems. Intermetallics 32:274–283

    Article  CAS  Google Scholar 

  16. Bocchini PJ, Lass EA, Moon KW, Williams ME, Campbell CE, Kattner UR, Dunand DC, Seidman DN (2013) Atom-probe tomographic study of γ/γ′ interfaces and compositions in an aged Co–Al–W superalloy. Scr Mater 68:563–566

    Article  CAS  Google Scholar 

  17. Yan HY, Vorontsov VA, Dye D (2014) Alloying effects in polycrystalline γ′ strengthened Co–Al–W base alloys. Intermetallics 48:44–53

    Article  CAS  Google Scholar 

  18. Makineni SK, Samanta A, Rojhirunsakool T, Alam T, Nithin B, Singh AK, Banerjee R, Chattopadhyay K (2015) A new class of high strength high temperature Cobalt based γ–γ′ Co–Mo–Al alloys stabilized with Ta addition. Acta Mater 97:29–40

    Article  CAS  Google Scholar 

  19. Suzuki A, DeNolf GC, Pollock TM (2007) Flow stress anomalies in γ/γ′ two-phase Co–Al–W-base alloys. Scripta Mater 56:385–388

    Article  CAS  Google Scholar 

  20. Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T, Ishida K, Zaefferer S (2009) Determination of phase equilibria in the Co-rich Co–Al–W ternary system with a diffusion-couple technique. Intermetallics 17:1085–1089

    Article  CAS  Google Scholar 

  21. Tsukamoto Y, Kobayashi S, Takasugi T (2010) The stability of γ′-Co(3)(Al,W) Phase in Co–Al–W ternary system. In: Nie JF, Morton A (eds) Pricm 7, Pts 1–3, vol 654–656, pp 448–451

    Google Scholar 

  22. Xue F, Wang ML, Feng Q (2011) Phase equilibria in Co-rich Co–Al–W alloys at 1300 ℃ and 900 ℃. In: Han YF, Pan F, Tang JM, Zhou CG (eds) Advanced structural materials, vol 686, pp 388–391

    Google Scholar 

  23. Lass EA, Grist RD, Williams ME (2016) Phase equilibria and microstructural evolution in ternary Co–Al–W Between 750 and 1100 ℃. J Phase Equilib Diffus 37:387–401

    Article  CAS  Google Scholar 

  24. Cui YF, Zhang X, Xu GL, Zhu WJ, Liu HS, Jin ZP (2011) Thermodynamic assessment of Co–Al–W system and solidification of Co-enriched ternary alloys. J Mater Sci 46:2611–2621

    Article  CAS  Google Scholar 

  25. Yang SY, Jiang M, Wang L (2013) Thermodynamic description of the γ′ phase in the Co–Al–W based superalloys. In: Han YF, Lin JP, Xiao CB, Zeng XQ (eds) High performance structure materials, vol 747–748, pp 654–658

    Google Scholar 

  26. Zhu J, Titus MS, Pollock TM (2014) Experimental investigation and thermodynamic modeling of the Co-rich region in the Co–Al–Ni–W quaternary system. J Phase Equilib Diffus 35:595–611

    Article  CAS  Google Scholar 

  27. Wang PS, Xiong W, Kattner UR, Campbell CE, Lass EA, Kontsevoi OY, Olson GB (2017) Thermodynamic re-assessment of the Al–Co–W system. Calphad Comput Coupling Phase Diagrams Thermochem 59:112–130

    Article  CAS  Google Scholar 

  28. Liu XL, Lindwall G, Gheno T, Liu Z-K (2016) Thermodynamic modeling of Al–Co–Cr, Al–Co–Ni, Co–Cr–Ni ternary systems towards a description for Al–Co–Cr–Ni. Calphad 52:125–142

    Article  CAS  Google Scholar 

  29. Li L, Wang C, Zhang J, Yang S, Han J, Lu Y, Liu X (2019) Phase equilibria of the Co–Ti–Ru ternary system. J Phase Equilib Diffus 40:561–569

    Article  CAS  Google Scholar 

  30. Liu X, Niu Z, Lu Y, Guo Y, Han J, Chen Y, Wang C (2018) Thermodynamic assessment of Co–Nb–W system. Rare Metal Mater Eng 47:2919–2926

    Article  CAS  Google Scholar 

  31. Liu X, Wu D, Zhang J, Yang M, Zhu J, Li L, Chen Y, Yang S, Han J, Lu Y, Wang C (2018) Experimental investigation of phase equilibria in the Co–Re–Ta ternary system. Metals 8

    Google Scholar 

  32. Liu XJ, Zhang QQ, Lu Y, Han JJ, Guo YH, Tao ZF, Huang YX, Wang CP (2021) Thermodynamic assessment of the Co–Cr–Nb system. J Phase Equilib Diffus 42:217–230

    Article  CAS  Google Scholar 

  33. Wang CP, Zhao CC, Lin Z, Liu XJ (2014) Experimental determination and thermodynamic calculation of the phase equilibria in the Co–Mn–Ta system. Int J Mater Res 105:1179–1190

    Article  CAS  Google Scholar 

  34. Zhou C, Guo C, Li C, Du Z (2019) Thermodynamic description of the Co–Ni–Ta system. Calphad Comput Coupling Phase Diagrams Thermochem 66

    Google Scholar 

  35. Zhou L, Wang CP, Yu Y, Liu XJ, Chinen H, Omori T, Ohnuma I, Kainuma R, Ishida K (2011) Experimental investigation and thermodynamic calculation of the phase equilibria in the Co–Nb–Ta ternary system. J Alloy Compd 509:1554–1562

    Article  CAS  Google Scholar 

  36. Cui YW, Jiang M, Ohnuma I, Oikawa K, Kainuma R, Ishida K (2008) Computational study of atomic mobility in Co–Fe–Ni ternary fcc alloys. J Phase Equilib Diffus 29:312–321

    Article  CAS  Google Scholar 

  37. Cui YW, Jiang M, Ohnuma I, Oikawa K, Kainuma R, Ishida K (2008) Computational study of atomic mobility for fcc phase of Co–Fe and Co–Ni binaries. J Phase Equilib Diffus 29:2–10

    Article  CAS  Google Scholar 

  38. Cui YW, Tang B, Kato R, Kainuma R, Ishida K (2011) Interdiffusion and atomic mobility for face-centered-cubic Co–Al alloys. Metall Mater Trans A Phys Metall Mater Sci 42A:2542–2546

    Article  CAS  Google Scholar 

  39. Cui YW, Xu GL, Kato R, Lu XG, Kainuma R, Ishida K (2013) Interdiffusion and atomic mobility for face-centered cubic (FCC) Co–W alloys. Metall Mater Trans A Phys Metall Mater Sci 44A:1621–1625

    Article  CAS  Google Scholar 

  40. He XW, Zhang WB, Yan MY, Chen C, Du Y, Zhang LJ, Huang BY (2015) Interdiffusivities and atomic mobilities in FCC Co–Mo–W alloys. Calphad Comput Coupling Phase Diagrams Thermochem 49:35–40

    Article  CAS  Google Scholar 

  41. Liu H, Liu Y, Du Y, Min Q, Zhang J, Liu S (2019) Atomic mobilities and diffusivities in fcc Co–X (X = Mn, Pt and Re) alloys. Calphad Comput Coupling Phase Diagrams Thermochem 64:306–312

    Article  CAS  Google Scholar 

  42. Liu X, Yu Y, Lu Y, Yang Y, Wang C (2018) Interdiffusion and atomic mobilities in Co-rich fcc Co–Cr–V alloys. Rare Metal Mater Eng 47:3251–3256

    Article  CAS  Google Scholar 

  43. Liu XJ, Yu Y, Lu Y, Luo YS, Han JJ, Wang CP (2018) Interdiffusion and atomic mobilities in fcc Co–Ga and Co–V Alloys. J Phase Equilib Diffus 39:2–10

    Article  CAS  Google Scholar 

  44. Liu YJ, Liang D, Du Y, Zhang LJ, Yu D (2009) Mobilities and diffusivities in fcc Co-X (X = Ag, Au, Cu, Pd and Pt) alloys. Calphad Comput Coupling Phase Diagrams Thermochem 33:695–703

    Article  CAS  Google Scholar 

  45. Wang CP, Qin SY, Lu Y, Yu Y, Han JJ, Liu XJ (2018) Interdiffusion and atomic mobilities in fcc Co–Cr–Mo alloys. J Phase Equilib Diffus 39:437–445

    Article  CAS  Google Scholar 

  46. Wen S, Du Y, Liu Y, Zhou P, Liu Z-K (2019) Atomic mobility evaluation and diffusion matrix for fcc_A1 Co–V–W alloys. J Mater Sci 54:13420–13432

    Article  CAS  Google Scholar 

  47. Jiang C (2008) First-principles study of Co3(Al, W) alloys using special quasi-random structures. Scr Mater 59:1075–1078

    Article  CAS  Google Scholar 

  48. Saal JE, Wolverton C (2013) Thermodynamic stability of Co–Al–W L1(2) γ′. Acta Mater 61:2330–2338

    Article  CAS  Google Scholar 

  49. Kobayashi S, Tsukamoto Y, Takasugi T (2012) The effects of alloying elements (Ta, Hf) on the thermodynamic stability of γ′-Co-3(Al, W) phase. Intermetallics 31:94–98

    Article  CAS  Google Scholar 

  50. Lass EA (2020) The effects of Fe and Si on the phase equilibria in a γ′-strengthened Co–Al–W-based superalloy. J Alloys Compd 825

    Google Scholar 

  51. Liu X, Wang Y, Xu W-W, Han J, Wang C (2020) Effects of transition elements on the site preference, elastic properties and phase stability of L12 γ′-Co3(Al, W) from first-principles calculations. J Alloy Compd 820:153179

    Article  CAS  Google Scholar 

  52. Makineni SK, Nithin B, Chattopadhyay K (2015) A new tungsten-free γ-γ′ Co–Al–Mo–Nb-based superalloy. Scr Mater 98:36–39

    Article  CAS  Google Scholar 

  53. Zenk CH, Neumeier S, Stone HJ, Goken M (2014) Mechanical properties and lattice misfit of γ/γ′ strengthened Co-base superalloys in the Co–W–Al–Ti quaternary system. Intermetallics 55:28–39

    Article  CAS  Google Scholar 

  54. Baler N, Pandey P, Palanisamy D, Makineni SK, Phanikumar G, Chattopadhyay K (2020) On the effect of W addition on microstructural evolution and γ′ precipitate coarsening in a Co–30Ni–10Al–5Mo–2Ta–2Ti alloy. Materialia 10:100632

    Article  CAS  Google Scholar 

  55. Tanaka K, Ooshima M, Tsuno N, Sato A, Inui H (2012) Creep deformation of single crystals of new Co–Al–W-based alloys with fcc/L1(2) two-phase microstructures. Phil Mag 92:4011–4027

    Article  CAS  Google Scholar 

  56. Li W, Li L, Antonov S, Lu F, Feng Q (2020) Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ′ phase nano-hardness of multi-component Co–Ni-base superalloys. J Alloys Compd 826

    Google Scholar 

  57. Yan HY, Vorontsov VA, Dye D (2014) Effect of alloying on the oxidation behaviour of Co–Al–W superalloys. Corros Sci 83:382–395

    Article  CAS  Google Scholar 

  58. Reyes Tirado FL, Perrin Toinin J, Dunand DC (2018) γ+γ′ microstructures in the Co–Ta–V and Co–Nb–V ternary systems. Acta Mater 151:137–148

    Google Scholar 

  59. Ruan J, Xu W, Yang T, Yu J, Yang S, Luan J, Omori T, Wang C, Kainuma R, Ishida K, Liu CT, Liu X (2020) Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γ′ region by machine learning and CALPHAD methods. Acta Mater 186:425–433

    Article  CAS  Google Scholar 

  60. Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I, Kainuma R, Ishida K (2008) Phase equilibria and microstructure on γ′ phase in Co–Ni–Al–W system. Mater Trans 49:1474–1479

    Article  CAS  Google Scholar 

  61. Li W, Li L, Antonov S, Feng Q (2019) Effective design of a Co–Ni–Al–W–Ta–Ti alloy with high γ′ solvus temperature and microstructural stability using combined CALPHAD and experimental approaches. Mater Design 180

    Google Scholar 

  62. Fu H, Zhang Y, Xue F, Zhang Y, Xu H, Xie J (2020) Microstructure and properties evolution of Co–Al–W–Ni–Cr superalloys by molybdenum and niobium substitutions for tungsten. Metall Mater Trans A Phys Metall Mater Sci 51:299–308

    Article  CAS  Google Scholar 

  63. Fan F, Sun H, Zhao D, Sha JB (2013) Effect of Mo on the high temperature oxidation behavior of Co–Al–W based alloys. In: Han YF, Lin JP, Xiao CB, Zeng XQ (eds) High performance structure materials, vol 747–748, pp 754–759

    Google Scholar 

  64. Feng G, Li H, Li SS, Sha JB (2012) Effect of Mo additions on microstructure and tensile behavior of a Co–Al–W–Ta–B alloy at room temperature. Scr Mater 67:499–502

    Article  CAS  Google Scholar 

  65. Sauza DJ, Bocchini PJ, Dunand DC, Seidman DN (2016) Influence of ruthenium on microstructural evolution in a model Co–Al–W superalloy. Acta Mater 117:135–145

    Article  CAS  Google Scholar 

  66. Klein L, Shen Y, Killian MS, Virtanen S (2011) Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys. Corros Sci 53:2713–2720

    Article  CAS  Google Scholar 

  67. Li L, Wang C, Chen Y, Yang S, Yang M, Zhang J, Lu Y, Han J, Liu X (2019) Effect of Re on microstructure and mechanical properties of γ/γ′ Co–Ti-based superalloys. Intermetallics 115:1–8

    Article  CAS  Google Scholar 

  68. Pandey P, Sawant AK, Nithin B, Peng Z, Makineni SK, Gault B, Chattopadhyay K (2019) On the effect of Re addition on microstructural evolution of a CoNi-based superalloy. Acta Mater 168:37–51

    Article  CAS  Google Scholar 

  69. Kolb M, Freund LP, Fischer F, Povstugar I, Makineni SK, Gault B, Raabe D, Mueller J, Spiecker E, Neumeier S, Goeken M (2018) On the grain boundary strengthening effect of boron in γ/γ′ Cobalt-base superalloys. Acta Mater 145:247–254

    Article  CAS  Google Scholar 

  70. Bocchini PJ, Sudbrack CK, Noebe RD, Dunand DC, Seidman DN (2017) Microstructural and creep properties of boron- and zirconium-containing cobalt-based superalloys. Mater Sci Eng Struct Mater Prop Microstruct Process 682:260–269

    Article  CAS  Google Scholar 

  71. Bauer A, Neumeier S, Pyczak F, Goken M (2012) Creep strength and microstructure of polycrystalline γ′-strengthened cobalt-base superalloys. Superalloys 2012:695–703

    Article  Google Scholar 

  72. Shinagawa K, Omori T, Oikawa K, Kainuma R, Ishida K (2009) Ductility enhancement by boron addition in Co–Al–W high-temperature alloys. Scr Mater 61:612–615

    Article  CAS  Google Scholar 

  73. Kamali H, Field RD, Clarke AJ, Nedjad SH, Kaufman MJ (2021) Development of the γ′ stability in Co–Al–W alloys at 800 ℃ by alloying with carbon. Metall Mater Trans A Phys Metall Mater Sci 52:5314–5328

    Article  CAS  Google Scholar 

  74. Wang L, Song L, Stark A, Liu Y, Oehring M, Lorenz U, Pyczak F (2019) Identification of Laves phases in a Zr or Hf containing γ-γ′ Co-base superalloy. J Alloy Compd 805:880–886

    Article  CAS  Google Scholar 

  75. MacKay RA, Gabb TP, Smialek JL, Nathal MV (2009) Alloy design challenge: development of low density superalloys for turbine blade applications

    Google Scholar 

  76. Zhou HJ, Li WD, Xue F, Zhang L, Qu XH, Qu XH, Feng Q (2016) Alloying effects on microstructural stability and γ′ phase nano-hardness in Co–Al–W–Ta–Ti-base superalloys. Superalloys 2016:981–990

    Google Scholar 

  77. Lass EA, Sauza DJ, Dunand DC, Seidman DN (2018) Multicomponent γ′-strengthened Co-based superalloys with increased solvus temperatures and reduced mass densities. Acta Mater 147:284–295

    Article  CAS  Google Scholar 

  78. Bocchini PJ, Sudbrack CK, Noebe RD, Dunand DC, Seidman DN (2017) Effects of titanium substitutions for aluminum and tungsten in Co–10Ni–9Al–9W (at.%) superalloys. Mater Sci Eng A Struct Mater Prop Microstruct Process 705:122–132

    Article  CAS  Google Scholar 

  79. Tanaka K, Ooshima M, Okamoto NL, Kishida K, Inui H (2011) Morphology change of γ′ precipitates in γ/γ′ two-phase microstructure in Co-based superalloys by higher-order alloying. MRS Online Proc Libr 1295:423–428

    Article  CAS  Google Scholar 

  80. Qu S, Li Y, He M, Wang C, Liu X, Chen Y, Yang Y (2019) Microstructural evolution and compression property of a novel γ′-strengthened directionally solidified CoNi-base superalloy. Mater Sci Eng A Struct Mater Prop Microstruct Process 761

    Google Scholar 

  81. Lass EA (2017) Application of computational thermodynamics to the design of a Co–Ni-based γ′-strengthened superalloy. Metall Mater Trans A Phys Metall Mater. Science 48A:2443–2459

    Google Scholar 

  82. Makineni SK, Nithin B, Chattopadhyay K (2015) Synthesis of a new tungsten-free γ-γ′ cobalt-based superalloy by tuning alloying additions. Acta Mater 85:85–94

    Article  CAS  Google Scholar 

  83. Nithin B, Samanta A, Makineni SK, Alam T, Pandey P, Singh AK, Banerjee R, Chattopadhyay K (2017) Effect of Cr addition on γ-γ′ cobalt-based Co–Mo–Al–Ta class of superalloys: a combined experimental and computational study. J Mater Sci 52:11036–11047

    Article  CAS  Google Scholar 

  84. Pandey P, Makineni SK, Samanta A, Sharma A, Das SM, Nithin B, Srivastava C, Singh AK, Raabe D, Gault B, Chattopadhyay K (2019) Elemental site occupancy in the L1(2) A(3)B ordered intermetallic phase in Co-based superalloys and its influence on the microstructure. Acta Mater 163:140–153

    Article  CAS  Google Scholar 

  85. Reyes Tirado FL, Taylor SV, Dunand DC (2020) Low-density, W-free Co–Nb–V–Al-based superalloys with γ/γ′ microstructure. Mater Sci Eng A 796:139977

    Google Scholar 

  86. Tirado FLR, Taylor S, Dunand DC (2019) Effect of Al, Ti and Cr additions on the γ-γ′ microstructure of W-free Co–Ta–V-based superalloys. Acta Mater 172:44–54

    Article  CAS  Google Scholar 

  87. Im HJ, Choi WS, Ryou K, Seol JB, Kang TH, Ko W-S, Choi P-P (2021) Enhanced microstructural stability of γ/γ′-strengthened Co–Ti–Mo-based alloys through Al additions. Acta Mater 214:117011

    Article  CAS  Google Scholar 

  88. Zenk CH, Povstugar I, Li R, Rinaldi F, Neumeier S, Raabe D, Goken M (2017) A novel type of Co–Ti–Cr-base γ/γ′ superalloys with low mass density. Acta Mater 135:244–251

    Article  CAS  Google Scholar 

  89. Liu X, Pan Y, Chen Y, Han J, Yang S, Ruan J, Wang C, Yang Y, Li Y (2018) Effects of Nb and W additions on the microstructures and mechanical properties of novel γ/γ′ Co–V–Ti-based superalloys. Metals 8

    Google Scholar 

  90. Pandey P, Mukhopadhyay S, Srivastava C, Makineni SK, Chattopadhyay K (2020) Development of new γ′-strengthened Co-based superalloys with low mass density, high solvus temperature and high temperature strength. Mater Sci Eng A 139578

    Google Scholar 

  91. Chen Y, Wang C, Ruan J, Omori T, Kainuma R, Ishida K, Liu X (2019) High-strength Co–Al–V-base superalloys strengthened by γ′-Co3(Al, V) with high solvus temperature. Acta Mater 170:62–74

    Article  CAS  Google Scholar 

  92. Chen Y, Wang C, Ruan J, Yang S, Omori T, Kainuma R, Ishida K, Han J, Lu Y, Liu X (2020) Development of low-density γ/γ′ Co–Al–Ta-based superalloys with high solvus temperature. Acta Mater 188:652–664

    Article  CAS  Google Scholar 

  93. Nyshadham C, Oses C, Hansen JE, Takeuchi I, Curtarolo S, Hart GLW (2017) A computational high-throughput search for new ternary superalloys. Acta Mater 122:438–447

    Article  CAS  Google Scholar 

  94. Pandey P, Mazumder N, Singh MP, Patil C, Sharma A, Makineni SK, Banerjee D, Chattopadhyay K (2021) Design of low mass density γ/γ′ CoNi-based superalloys with promising high-temperature mechanical properties. Phys Rev Mater 5:093601

    Google Scholar 

  95. Xu WW, Shang SL, Wang CP, Gang TQ, Huang YF, Chen LJ, Liu XJ, Liu ZK (2018) Accelerating exploitation of Co–Al-based superalloys from theoretical study. Mater Des 142:139–148

    Article  CAS  Google Scholar 

  96. Xu WW, Xiong ZY, Gong XG, Yin GH, Chen LJ, Wang CP, Liu XJ (2021) Accelerating the discovery of novel γ/γ’ Co-based superalloys by probing temperature and alloying effects on the γ’ precipitates. Materialia 18:101171

    Article  CAS  Google Scholar 

  97. Cao BX, Xu WW, Yu CY, Wu SW, Kong HJ, Ding ZY, Zhang TL, Luan JH, Xiao B, Jiao ZB, Liu Y, Yang T, Liu CT (2022) L12-strengthened multicomponent Co–Al–Nb-based alloys with high strength and matrix-confined stacking-fault-mediated plasticity. Acta Mater 229:117763

    Article  CAS  Google Scholar 

  98. Zhang L, Qu XH, Qin ML, Rafi ud D, He XB, Liu Y (2012) Microstructure and mechanical properties of γ′ strengthened Co–Ni–Al–W-base ODS alloys. Mater Chem Phys 136:371–378

    Google Scholar 

  99. Xu WW, Yin GH, Xiong ZY, Yu Q, Gang TQ, Chen LJ (2021) Plasticity-induced stacking fault behaviors of γ’ precipitates in novel CoNi-based superalloys. J Mater Sci Technol 90:20–29

    Article  CAS  Google Scholar 

  100. Fan Z, Wang C, Zhang C, Yu Y, Chen H, Yang Z (2018) The temperature dependence of high-temperature strength and deformation mechanism in a single crystal CoNi-base superalloy. Mater Sci Eng A 735:114–120

    Article  CAS  Google Scholar 

  101. Migas D, Moskal G, Maciag T (2020) Thermal analysis of W-free Co–(Ni)–Al–Mo–Nb superalloys. J Therm Anal Calorim 142:149–156

    Article  CAS  Google Scholar 

  102. Zenk CH, Neumeier S, Engl NM, Fries SG, Dolotko O, Weiser M, Virtanen S, Göken M (2016) Intermediate Co/Ni-base model superalloys-Thermophysical properties, creep and oxidation. Scr Mater 112:83–86

    Article  CAS  Google Scholar 

  103. Titus MS, Suzuki A, Pollock TM (2012) Creep and directional coarsening in single crystals of new γ-γ′ cobalt-base alloys. Scr Mater 66:574–577

    Article  CAS  Google Scholar 

  104. Titus MS, Eggeler YM, Suzuki A, Pollock TM (2015) Creep-induced planar defects in L1(2)-containing Co- and CoNi-base single-crystal superalloys. Acta Mater 82:530–539

    Article  CAS  Google Scholar 

  105. Eggeler YM, Muller J, Titus MS, Suzuki A, Pollock TM, Spiecker E (2016) Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Mater 113:335–349

    Article  CAS  Google Scholar 

  106. Im HJ, Lee S, Choi WS, Makineni SK, Raabe D, Ko W-S, Choi P-P (2020) Effects of Mo on the mechanical behavior of γ/γʹ-strengthened Co–Ti-based alloys. Acta Mater 197:69–80

    Article  CAS  Google Scholar 

  107. Chen Y (2020) Investigation on composition design, microstructure control, and mechanical property of the novel Co–Al–X (X: V, Ta)-base superalloys. vol. Ph.D: Xiamen University

    Google Scholar 

  108. Okamoto NL, Oohashi T, Adachi H, Kishida K, Inui H, Veyssiere P (2011) Plastic deformation of polycrystals of Co-3(Al, W) with the L1(2) structure. Phil Mag 91:3667–3684

    Article  CAS  Google Scholar 

  109. Suzuki A, Inui H, Pollock TM (2015) L12-strengthened cobalt-base superalloys. Annu Rev Mater Res 45:345–368

    Article  CAS  Google Scholar 

  110. Liu CT (1993) Ni3Al and its alloys. In: Darolia R (ed) 1st international symposium on structural intermetallics: minerals metals and materials society. pp 365–377

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51601161) and Youth Innovation Fund Project of Xiamen (Grant No. 3502Z20206057), the Natural Science Foundation of Fujian Province of China (Grant No. 2020J01051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, WW. (2022). Overview of the Development of L12 γ′-Strengthened Cobalt-Base Superalloys. In: Jiao, Z., Yang, T. (eds) Advanced Multicomponent Alloys. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4743-8_7

Download citation

Publish with us

Policies and ethics