Skip to main content

The Utilization of Industrial Waste as a Stabilizing Agent—A Review

  • Conference paper
  • First Online:
Proceedings of Indian Geotechnical and Geoenvironmental Engineering Conference (IGGEC) 2021, Vol. 2 ( IGGEC 2021)

Abstract

Chemical soil stabilization, the process of blending and mixing chemical additives to improve the engineering properties of the soil, has become an indispensable part of civil engineering. However, the use of additives such as cement, quick lime, bitumen as a stabilizing agents causes immense environmental and economical ineffectiveness. And thus, many of the material-producing industries and researchers are opening up to the idea of utilizing industrial waste or by-products as a chemical additive to improve soil quality which in turn will provide improved performance, lowered construction, disposal costs, and reduced environmental pollution. The purpose of this paper is to present a comprehensive review of several research articles which deal with different industrial wastes containing pozzolanic characters such as Coal combustion Fly ash (CFA), copper slag (CS), Granulated Blast Furnace Slag (GBS), Cement Kiln Dust (CKD), Rice Husk Ash (RHA) as a stabilizing agent. The value of several engineering qualities of stabilized soil combined in various percentages and curing times, such as the Unconfined Compression Test (UCS), California Bearing Ratio Test (CBR), Optimum Moisture Content (OMC), Maximum Dry Density (MDD), and Atterberg's limitations, will also be comparatively examined. The efficiency and effectiveness of these various industrial wastes, with or without other additives, will be compared in terms of soil quality improvement, as well as environmental and economic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. McDowell, Stabilization of soils with lime, lime-flyash, and other lime reactive materials. Highw. Res. Board Bull., 60–66 (1959), [Online]. Available: http://onlinepubs.trb.org/Onlinepubs/hrbbulletin/231/231-004.pdf

  2. S.Y. Amakye, S.J. Abbey, Understanding the performance of expansive subgrade materials treated with non-traditional stabilisers: a review. Clean. Eng. Technol. 4, 100159 (2021). https://doi.org/10.1016/J.CLET.2021.100159

    Article  Google Scholar 

  3. S. Kumar, D. Singh, Municipal solid waste incineration bottom ash: a competent raw material with new possibilities. Innov. Infrastruct. Solut. 6(4), 1–15 (2021). https://doi.org/10.1007/S41062-021-00567-0

  4. R. Sanjay, C. Nivetha, D.S. Vijayan, D. Parthiban, Utilization of waste materials in soil stabilization. Int. J. Innov. Technol. Explor. Eng. 9(2), 4459–4463 (2019). https://doi.org/10.35940/ijitee.b8126.129219

    Article  Google Scholar 

  5. P. Alam, D. Singh, S. Kumar, Incinerated municipal solid waste bottom ash bricks: a sustainable and cost-efficient building material. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.07.346

    Article  Google Scholar 

  6. D. Singh, A. Kumar, Geo-environmental application of municipal solid waste incinerator ash stabilized with cement. J. Rock Mech. Geotech. Eng. 9(2), 370–375 (2017). https://doi.org/10.1016/j.jrmge.2016.11.008

    Article  Google Scholar 

  7. L. Yadu, R.K. Tripathi, Effects of granulated blast furnace slag in the engineering behaviour of stabilized soft soil. Procedia Eng. 51, 125–131 (2013). https://doi.org/10.1016/j.proeng.2013.01.019

    Article  Google Scholar 

  8. A. N. K. Saranya, K. Rohini, A review on utilization of copper slag and silica fume in geotechnical engineering. Int. Res. J. Eng. Technol. 4(2), 1836–1838 (2017), [Online]. Available: https://irjet.net/archives/V4/i2/IRJET-V4I2361.pdf

  9. A.A. Amadi, A.S. Osu, Effect of curing time on strength development in black cotton soil—quarry fines composite stabilized with cement kiln dust (CKD). J. King Saud Univ. Eng. Sci. 30(4), 305–312 (2018). https://doi.org/10.1016/J.JKSUES.2016.04.001

    Article  Google Scholar 

  10. Y. Liu et al., Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Constr. Build. Mater. 221, 1–11 (2019). https://doi.org/10.1016/J.CONBUILDMAT.2019.05.157

    Article  Google Scholar 

  11. P.G. Kumar, S. Harika, Stabilization of expansive subgrade soil by using fly ash. Mater. Today Proc. 45, 6558–6562 (2021). https://doi.org/10.1016/J.MATPR.2020.11.469

    Article  Google Scholar 

  12. X. Dong et al., Facile use of coal combustion fly ash (CCFA) as Ni-Re bime-tallic catalyst support for high-performance CO2 methanation. Waste Manag. 107, 244–251 (2020). https://doi.org/10.1016/j.wasman.2020.04.014

    Article  Google Scholar 

  13. J. Shahiri, M. Ghasemi, Utilization of soil stabilization with cement and copper slag as subgrade materials in road embankment construction (Vol. 5, no. 1, 2017)

    Google Scholar 

  14. I. Yuksel, Blast-furnace slag. Waste Suppl. Cem. Mater. Concr. Charact. Prop. Appl., 361–415 (2018). https://doi.org/10.1016/B978-0-08-102156-9.00012-2

  15. H.M. Saleh, F.A. El-Saied, T.A. Salaheldin, A.A. Hezo, Macro- and nanomaterials for improvement of mechanical and physical properties of cement kiln dust-based composite materials. J. Clean. Prod. 204, 532–541 (2018). https://doi.org/10.1016/J.JCLEPRO.2018.08.303

    Article  Google Scholar 

  16. S. Verma, V.S. Khanduri, A. Mittal, Stabilization of colluvial soil using rice husk ash and micro silica powder. Mater. Today Proc. 32, 819–823 (2020). https://doi.org/10.1016/J.MATPR.2020.04.019

    Article  Google Scholar 

  17. V. Gupta, S. Siddique, S. Chaudhary, Characterization of different types of fly ash collected from various sources in Central India. Mater. Today Proc. 18, 5076–5080 (2019). https://doi.org/10.1016/J.MATPR.2019.07.503

    Article  Google Scholar 

  18. T.C. Phiri, P. Singh, A.N. Nikoloski, The potential for copper slag waste as a resource for a circular economy: a review—part II. Miner. Eng. 172, 107150 (2021). https://doi.org/10.1016/J.MINENG.2021.107150

    Article  Google Scholar 

  19. S.K. Tripathy, J. Dasu, Y.R. Murthy, G. Kapure, A.R. Pal, L.O. Filippov, Utilisation perspective on water quenched and air-cooled blast furnace slags. J. Clean. Prod. 262, 121354 (2020). https://doi.org/10.1016/J.JCLEPRO.2020.121354

    Article  Google Scholar 

  20. A. A. Saleh, H. A. Abdel-Gawwad, M. G. Abd EL-Moghny, M. S. El-Deab, The sustainable utilization of weathered cement kiln dust in the cleaner production of alkali activated binder incorporating glass sludge. Constr. Build. Mater. 300, 124308 (2021). https://doi.org/10.1016/J.CONBUILDMAT.2021.124308

  21. A. Kumar Yadav, K. Gaurav, R. Kishor, S. K. Suman, Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. Int. J. Pavement Res. Technol. 10(3), 254–261 (2017). https://doi.org/10.1016/J.IJPRT.2017.02.001

  22. D. Singh, A. Kumar, Factors affecting properties of MSWI bottom ash employing cement and fiber for geotechnical applications. Environ. Dev. Sustain. 22(7), 6891–6905 (2020). https://doi.org/10.1007/s10668-019-00519-w

    Article  Google Scholar 

  23. D. Singh, A. Kumar, Performance evaluation and geo-characterization of municipal solid waste incineration ash material amended with cement and fibre. Int. J. Geosynth. Gr. Eng. 3(2) (2017). https://doi.org/10.1007/s40891-017-0094-6

  24. K.C. Onyelowe, M.E. Onyia, D.B. Van, H. Baykara, H.U. Ugwu, Pozzolanic reaction in clayey soils for stabilization purposes: a classical overview of sustainable transport geotechnics. Adv. Mater. Sci. Eng. 2021, 1–7 (2021). https://doi.org/10.1155/2021/6632171

    Article  Google Scholar 

  25. B. K. Saikia, J. C. Hower, N. Islam, A. Sharma, P. Das, Geochemistry and petrology of coal and coal fly ash from a thermal power plant in India. Fuel. 291, 120122 (2021). https://doi.org/10.1016/j.fuel.2020.120122

  26. R. Renjith, D. Robert, S. Setunge, S. Costa, A. Mohajerani, Optimization of fly ash based soil stabilization using secondary admixtures for sustainable road construction. J. Clean. Prod. 294, 126264 (2021). https://doi.org/10.1016/J.JCLEPRO.2021.126264

    Article  Google Scholar 

  27. H. Karami, J. Pooni, D. Robert, S. Costa, J. Li, S. Setunge, Use of secondary additives in fly ash based soil stabilization for soft subgrades. Transp. Geotech. 29, 100585 (2021). https://doi.org/10.1016/J.TRGEO.2021.100585

    Article  Google Scholar 

  28. M. S. Deepak, S. Rohini, B. S. Harini, G. B. G. Ananthi, Influence of fly-ash on the engineering characteristics of stabilised clay soil. Mater. Today Proc. 37(Part 2), 2014–2018 (2021). https://doi.org/10.1016/J.MATPR.2020.07.497

  29. R. Gobinath, I. Akinwumi, G.P. Ganapathy, R. Mithuna, Compaction and shear strength enhancement of weak soil by copper slag addition. Mater. Today Proc. 39, 834–838 (2021). https://doi.org/10.1016/J.MATPR.2020.10.092

    Article  Google Scholar 

  30. R. Ekkabaram, Enhancing the Clay Soil Characteristics using Copper Slag Stabilization Enhancing the Clay Soil Characteristics using Copper Slag Stabilization (Vol. 12, 2016), pp. 1–6

    Google Scholar 

  31. R. C. Gupta, B. S. Thomas, P. Gupta, L. Rajan, D. Thagriya, An experimental study of clayey soil. Int. J. Struct. Civ. Eng. Res. 1(1), 110–119 (2012), [Online]. Available: https://ishitvtech.in/pdf/sajet-vol-3-no7-15.pdf

  32. A. K. Pathak, V. Pandey, K. M. J. P. Singh, Soil Stabilisation Using Ground Granulated Blast Furnace Slag (Vol. 4, no. 5, 2014), pp. 164–171

    Google Scholar 

  33. T. Wattez, C. Patapy, L. Frouin, J. Waligora, M. Cyr, Interactions between alkali-activated ground granulated blastfurnace slag and organic matter in soil stabilization/solidification. Transp. Geotech. 26, 100412 (2021). https://doi.org/10.1016/J.TRGEO.2020.100412

    Article  Google Scholar 

  34. S. Rimal, R.K. Poudel, D. Gautam, Experimental study on properties of natural soils treated with cement kiln dust. Case Stud. Constr. Mater. 10, e00223 (2019). https://doi.org/10.1016/J.CSCM.2019.E00223

    Article  Google Scholar 

  35. E. A. Adeyanju, C. A. Okeke, Clay soil stabilization using cement kiln dust. IOP Conf. Ser. Mater. Sci. Eng. 640(1) (2019). https://doi.org/10.1088/1757-899X/640/1/012080

  36. J. Sudheer Kumar, U. Janewoo, Stabilization of expansive soil with cement Kiln Dust and RBI grade 81 at subgrade level. Geotech. Geol. Eng. 34(4), 1037–1046 (2016). https://doi.org/10.1007/s10706-016-0024-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayadarshini Laishram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laishram, M., Singh, D., Kumar, S. (2023). The Utilization of Industrial Waste as a Stabilizing Agent—A Review. In: Agnihotri, A.K., Reddy, K.R., Chore, H.S. (eds) Proceedings of Indian Geotechnical and Geoenvironmental Engineering Conference (IGGEC) 2021, Vol. 2. IGGEC 2021. Lecture Notes in Civil Engineering, vol 281. Springer, Singapore. https://doi.org/10.1007/978-981-19-4731-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4731-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4730-8

  • Online ISBN: 978-981-19-4731-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics