Skip to main content

Terahertz Imaging: Timeline and Future Prospects

  • Chapter
  • First Online:
Terahertz Devices, Circuits and Systems

Abstract

Terahertz imaging is the science of imaging that uses terahertz radiation. Electromagnetic radiation between the frequency of 0.1 and 10 THz is called terahertz radiation. Terahertz imaging has been around for approximately 30 years now, giving us an appropriate moment to review what has been achieved so far in this field and what new prospects lie ahead. This chapter will emphasize the fields that should be using terahertz imaging and will focus upon more new fields that should embrace this technology. Also called T-ray imaging, terahertz imaging has several applications like non-invasive medical imaging, spectrometers, and optics. Beneficial for 3D imaging, it can be used for imaging on a cellular level of biological tissues and submicron semiconductor devices. Researchers have used terahertz imaging on nanoresolution levels. The industry is shifting to use terahertz radiations for real-time imaging. Commercial terahertz imaging applications extend to weld joint inspection, food product examination, and investigation of birefringence. This chapter will also analyze the challenges and opportunities of producing commercially viable equipment using terahertz imaging technology. This chapter will introduce terahertz technology, its importance and relevance, and some successful terahertz imaging applications. Then a review of the timeline of events in the terahertz imaging history will show how much the technology has progressed so far and what more lies ahead. An analysis of how terahertz competes with the existing technology in several fields of applications will be shown. Then a detailed explanation of the terahertz imaging technology will be presented so that the researchers can understand what goes beyond the picture of this imaging technology. Further, a few application ideas will be presented where this technology can be used both from an academic and industrial point of view. Finally, the chapter will conclude with a discussion of challenges for this technology with some insights on how they can be handled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu BB, Nuss MC. Imaging with terahertz waves. Opt Lett. 1995;20(16):1716–8.

    Google Scholar 

  2. Mittleman DM, Gupta M, Neelamani R, Baraniuk RG, Rudd JV, Koch M. Recent advances in terahertz imaging. Appl Phys B. 1999;68(6):1085–94.

    Google Scholar 

  3. Jiang Z, Zhang X-C. Terahertz imaging via electrooptic effect. IEEE Trans Microw Theory Tech. 1999;47(12):2644–50.

    Article  ADS  Google Scholar 

  4. Arnone D, Ciesla C, Pepper M. Terahertz imaging comes into view. Phys World. 2000;13(4):35.

    Article  Google Scholar 

  5. Mickan S, Abbott D, Munch J, Zhang X-C, Van Doorn T. Analysis of system trade-offs for terahertz imaging. Microelectron J. 2000;31(7):503–14.

    Google Scholar 

  6. Jiang Z, Xu XG, Zhang X-C. Improvement of terahertz imaging with a dynamic subtraction technique. Appl Opt. 2000;39(17):2982–7.

    Google Scholar 

  7. Siebert KJ, Quast H, Leonhardt R, Löffler T, Thomson M, Bauer T, Roskos HG, Czasch S. Continuous-wave all-optoelectronic terahertz imaging. Appl Phys Lett. 2002;80(16):3003–5.

    Google Scholar 

  8. Chen Q, Jiang Z, Xu GX, Zhang X-C. Near-field terahertz imaging with a dynamic aperture. Opt Lett. 2000;25(15):1122–4.

    Google Scholar 

  9. Chen H-T, Kersting R, Cho GC. Terahertz imaging with nanometer resolution. Appl Phys Lett. 2003;83(15):3009–11.

    Google Scholar 

  10. Mittleman D. Terahertz imaging. In: Sensing with terahertz radiation. Springer; 2003. p. 117–53.

    Google Scholar 

  11. Kawase K, Ogawa Y, Watanabe Y, Inoue H. Nondestructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express. 2003;11(20):2549–54.

    Article  ADS  Google Scholar 

  12. Zandonella C. Terahertz imaging: T-ray specs. Nature. 2003;424(6950):721–3.

    Google Scholar 

  13. Berry E, Walker GC, Fitzgerald AJ, Zinov’Ev NN, Chamberlain M, Smye SW, Miles RE, Smith MA. Do in vivo terahertz imaging systems comply with safety guidelines? J Laser Appl. 2003;15(3):192–8.

    Google Scholar 

  14. Kemp MC, Taday PF, Cole BE, Cluff JA, Fitzgerald AJ, Tribe WR. Security applications of terahertz technology. In: Terahertz for military and security applications, vol. 5070. SPIE; 2003. p. 44–52.

    Google Scholar 

  15. Dobroiu A, Yamashita M, Ohshima YN, Morita Y, Otani C, Kawase K. Terahertz imaging system based on a backwardwave oscillator. Appl Opt. 2004;43(30):5637–46.

    Google Scholar 

  16. Humphreys K, Loughran JP, Gradziel M, Lanigan W, Ward T, Murphy JA, O’Sullivan C. Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering. In: The 26th annual international conference of the IEEE engineering in medicine and biology society, vol. 1. IEEE; 2004. p. 1302–5.

    Google Scholar 

  17. Kawase K. Terahertz imaging for drug detection and large-scale integrated circuit inspection. Opt Photonics News. 2004;15(10):34–9.

    Article  ADS  Google Scholar 

  18. Appleby R. Passive millimetre–wave imaging and how it differs from terahertz imaging. Philos Trans R Soc Lond A Math Phys Eng Sci. 2004;362(1815):379–93.

    Google Scholar 

  19. Karpowicz N, Zhong H, Xu J, Lin K-I, Hwang J-S, Zhang XC. Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging. Semicond Sci Technol. 2005;20(7):S293.

    Google Scholar 

  20. Lee AW, Qin Q, Kumar S, Williams BS, Hu Q, Reno JL. Real-time terahertz imaging over a standoff distance (> 25 meters). Appl Phys Lett. 2006;89(14):141125.

    Google Scholar 

  21. Zimdars D, White JS, Stuk G, Chernovsky A, Fichter G, Williamson S. Large area terahertz imaging and non-destructive evaluation applications. Insight-Non-Destr Test Condition Monit. 2006;48(9):537–9.

    Google Scholar 

  22. Hellicar A, Du J, Li L, Greene K, Beeton N, Hanham S, Kot J, Hislop G, et al. Development of a terahertz imaging system. In: 2007 IEEE antennas and propagation society international symposium. IEEE; 2007. p. 5535–8

    Google Scholar 

  23. Chan WL, Deibel J, Mittleman DM. Imaging with terahertz radiation. Rep Prog Phys. 2007;70(8):1325.

    Google Scholar 

  24. Abramovich A, Kopeika NS, Rozban D, Farber E. Inexpensive detector for terahertz imaging. Appl Opt. 2007;46(29):7207–11.

    Google Scholar 

  25. Lu M, Shen J, Li N, Zhang Y, Zhang C, Liang L, Xu X. Detection and identification of illicit drugs using terahertz imaging. J Appl Phys. 2006;100(10):103104.

    Google Scholar 

  26. Hargreaves S, Lewis RA. Terahertz imaging: materials and methods. J Mater Sci Mater Electron. 2007;18(1):299–303.

    Article  Google Scholar 

  27. Nakajima S, Hoshina H, Yamashita M, Otani C, Miyoshi N. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Appl Phys Lett. 2007;90(4):041102.

    Article  ADS  Google Scholar 

  28. Kim SM, Hatami F, Harris JS, Kurian AW, Ford J, King D, Scalari G, Giovannini M, Hoyler N, Faist J, et al. Biomedical terahertz imaging with a quantum cascade laser. Appl Phys Lett. 2006;88(15):153903.

    Google Scholar 

  29. Löffler T, May T, am Weg C, Alcin A, Hils B, Roskos HG. Continuous-wave terahertz imaging with a hybrid system. Appl Phys Lett. 2007;90(9):091111.

    Google Scholar 

  30. Wietzke S, Jördens C, Krumbholz N, Baudrit B, Bastian M, Koch M. Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints. J Eur Opt Soc-Rapid Publ. 2007;2.

    Google Scholar 

  31. Chamberlin R, Grossman EN. Terahertz imaging and sources |NIST. https://www.nist.gov/programs-projects/terahertz-imaging-and-sources (2008). Created 21 Nov 2008, Updated 13 July 2017.

  32. Chan WL, Charan K, Takhar D, Kelly KF, Baraniuk RG, Mittleman DM. A single-pixel terahertz imaging system based on compressed sensing. Appl Phys Lett. 2008;93(12):121105.

    Google Scholar 

  33. Jackson JB, Mourou M, Whitaker JF, Duling Iii IN, Williamson SL, Menu M, Mourou GA. Terahertz imaging for non-destructive evaluation of mural paintings. Opt Commun. 2008;281(4):527–32.

    Google Scholar 

  34. Chan WL, Moravec ML, Baraniuk RG, Mittleman DM. Terahertz imaging with compressed sensing and phase retrieval. Opt Lett. 2008;33(9):974–6.

    Google Scholar 

  35. Taylor ZD, Singh RS, Culjat MO, Suen JY, Grundfest WS, Lee H, Brown ER. Reflective terahertz imaging of porcine skin burns. Opt Lett. 2008;33(11):1258–60.

    Article  ADS  Google Scholar 

  36. Lo YH, Leonhardt R. Aspheric lenses for terahertz imaging. Opt Express. 2008;16(20):15991–8.

    Google Scholar 

  37. Oyama Y, Zhen L, Tanabe T, Kagaya M. Sub-terahertz imaging of defects in building blocks. Ndt E Int. 2009;42(1):28–33.

    Google Scholar 

  38. Adam AJ, Planken PC, Meloni S, Dik J. Terahertz imaging of hidden paint layers on canvas. Opt Express. 2009;17(5):3407–16.

    Google Scholar 

  39. Oh SJ, Kang J, Maeng I, Suh J-S, Huh Y-M, Haam S, Son J-H. Nanoparticle-enabled terahertz imaging for cancer diagnosis. Opt Express. 2009;17(5):3469–75.

    Google Scholar 

  40. Landy NI, Bingham CM, Tyler T, Jokerst N, Smith DR, Padilla WJ. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys Rev B. 2009;79(12):125104.

    Google Scholar 

  41. Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M. Terahertz imaging: applications and perspectives. Appl Opt. 2010;49(19):E48–57.

    Google Scholar 

  42. Brun M-A, Formanek F, Yasuda A, Sekine M, Ando N, Eishii Y. Terahertz imaging applied to cancer diagnosis. Phys Med Biol. 2010;55(16):4615.

    Google Scholar 

  43. Abraham E, Younus A, Delagnes J-C, Mounaix P. Non-invasive investigation of art paintings by terahertz imaging. Appl Phys A. 2010;100(3):585–90.

    Article  ADS  Google Scholar 

  44. Krozer V, Löffler T, Dall J, Kusk A, Eichhorn F, Olsson RK, Buron JD, Jepsen PU, Zhurbenko V, Jensen T. Terahertz imaging systems with aperture synthesis techniques. IEEE Trans Microw Theory Tech. 2010;58(7):2027–39.

    Google Scholar 

  45. Schuster F, Coquillat D, Videlier H, Sakowicz M, Teppe F, Dussopt L, Giffard B, Skotnicki T, Knap W. Broadband terahertz imaging with highly sensitive silicon cmos detectors. Opt Express. 2011;19(8):7827–32.

    Google Scholar 

  46. Muravev VM, Gusikhin PA, Tsydynzhapov GE, Fortunatov AA, Kukushkin IV. Spectroscopy of terahertz radiation using high-q photonic crystal microcavities. Phys Rev B. 2012;86(23):235144.

    Article  ADS  Google Scholar 

  47. Muravev VM, Kukushkin IV. Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect. Appl Phys Lett. 2012;100(8):082102.

    Article  ADS  Google Scholar 

  48. Yu C, Fan S, Sun Y, Pickwell-MacPherson E. The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant Imaging Med Surg. 2012;2(1):33.

    Google Scholar 

  49. Zeitler JA, Shen Y-C. Industrial applications of terahertz imaging. In: Terahertz spectroscopy and imaging. Springer; 2012. p. 451–89

    Google Scholar 

  50. Eadie LH, Reid CB, Fitzgerald AJ, Wallace VP. Optimizing multi-dimensional terahertz imaging analysis for colon cancer diagnosis. Expert Syst Appl. 2013;40(6):2043–50.

    Google Scholar 

  51. Sherry H, Grzyb J, Zhao Y, Al Hadi R, Cathelin A, Kaiser A, Pfeiffer U. A 1kpixel cmos camera chip for 25 fps real-time terahertz imaging applications. In: 2012 IEEE international solid-state circuits conference. IEEE; 2012. p. 252–54.

    Google Scholar 

  52. Blanchard F, Doi A, Tanaka T, Tanaka K. Real-time, subwavelength terahertz imaging. Annu Rev Mater Res. 2013;43:237–59.

    Article  ADS  Google Scholar 

  53. Ouchi T, Kajiki K, Koizumi T, Itsuji T, Koyama Y, Sekiguchi R, Kubota O, Kawase K. Terahertz imaging system for medical applications and related high efficiency terahertz devices. J Infrared Millimeter Terahertz Waves. 2014;35(1):118–30.

    Article  Google Scholar 

  54. Nagatsuma T, Nishii H, Ikeo T. Terahertz imaging based on optical coherence tomography. Photonics Res. 2014;2(4):B64–9.

    Article  Google Scholar 

  55. Ok G, Park K, Kim HJ, Chun HS, Choi S-W. High-speed terahertz imaging toward food quality inspection. Appl Opt. 2014;53(7):1406–12.

    Google Scholar 

  56. Dean P, Valavanis A, Keeley J, Bertling K, Lim YL, Alhathlool R, Burnett AD, Li LH, Khanna SP, Indjin D, et al. Terahertz imaging using quantum cascade lasers—a review of systems and applications. J Phys D Appl Phys. 2014;47(37):374008.

    Article  Google Scholar 

  57. Tewari P, Bajwa N, Singh RS, Culjat MO, Grundgest WS, Taylor ZD, Kealey CP, Bennett DB, Barnett KS, Stojadinovic A. In vivo terahertz imaging of rat skin burns. J Biomed Opt. 2012;17(4):040503.

    Google Scholar 

  58. Ahi K, Asadizanjani N, Shahbazmohamadi S, Tehranipoor M, Anwar M. Terahertz characterization of electronic components and comparison of terahertz imaging with x-ray imaging techniques. In: Terahertz physics, devices, and systems IX: advanced applications in industry and defense, vol. 9483. International Society for Optics and Photonics; 2015. p. 94830K.

    Google Scholar 

  59. Ahi K, Anwar M. Developing terahertz imaging equation and enhancement of the resolution of terahertz images using deconvolution. In: Terahertz physics, devices, and systems X: advanced applications in industry and defense, vol. 9856. SPIE; 2016. p. 57–74.

    Google Scholar 

  60. Wade CG, Sibalić N, de Melo NR, Kondo JM, Adams CS, Weatherill KJ. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat Photonics. 2017;11(1):40–3.

    Google Scholar 

  61. Guerboukha H, Nallappan K, Skorobogatiy M. Toward real-time terahertz imaging. Adv Opt Photonics. 2018;10(4):843–938.

    Article  ADS  Google Scholar 

  62. Mittleman DM. Twenty years of terahertz imaging. Opt Express. 2018;26(8):9417–31.

    Google Scholar 

  63. Hillger P, Grzyb J, Jain R, Pfeiffer UR. Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans Terahertz Sci Technol. 2018;9(1):1–19.

    Google Scholar 

  64. Shchepetilnikov AV, Kaysin BD, Gusikhin PA, Muravev VM, Tsydynzhapov GE, Nefyodov YA, Dremin AA, Kukushkin IV. Optimization of the frequency response of a novel gaas plasmonic terahertz detector. Opt Quant Electron. 2019;51(12):1–8.

    Article  Google Scholar 

  65. Ahi K. A method and system for enhancing the resolution of terahertz imaging. Measurement. 2019;138:614–9.

    Article  ADS  Google Scholar 

  66. Shchepetilnikov AV, Zarezin AM, Muravev VM, Gusikhin PA, Kukushkin IV. Quantitative analysis of water content and distribution in plants using terahertz imaging. Opt Eng. 2020;59(6):061617.

    Google Scholar 

  67. Stantchev RI, Yu X, Blu T, Pickwell-MacPherson E. Real-time terahertz imaging with a single-pixel detector. Nat Commun. 2020;11(1):1–8.

    Google Scholar 

  68. Kasjoo SR, Mokhar MM, Zakaria NF, Juhari NJ. A brief overview of detectors used for terahertz imaging systems. In: AIP conference proceedings, vol. 2203. AIP Publishing LLC; 2020. p. 020020.

    Google Scholar 

  69. Valušis G, Lisauskas A, Yuan H, Knap W, Roskos HG. Roadmap of terahertz imaging 2021. Sensors. 2021;21(12):4092.

    Google Scholar 

  70. Castro-Camus E, Koch M, Mittleman DM. Recent advances in terahertz imaging: 1999 to 2021. Appl Phys B. 2022;128(1):1–10.

    Google Scholar 

Download references

Acknowledgements

I would like to thank Mr. Achyut Srivastava, Development Engineer, Hero MotoCorp, for his help with the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, G., Agarwal, S. (2022). Terahertz Imaging: Timeline and Future Prospects. In: Das, S., Nella, A., Patel, S.K. (eds) Terahertz Devices, Circuits and Systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-4105-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4105-4_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4104-7

  • Online ISBN: 978-981-19-4105-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics