Skip to main content

Precise Orbit Determination of LEO Satellite Using Onboard BDS-3 B1C/B2a Observations

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC 2022) Proceedings

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 910))

Abstract

The precise orbit determination (POD) of low earth orbit (LEO) satellites is always a hotspot topic in the field of satellite geodesy. Current gravity field determination, satellite altimetry, and remote sensing measurement depend crucially on the precise orbits of the spacecraft. BeiDou global navigation satellite system (BDS-3) is officially completed in 2020 and offers positioning, navigation, and timing (PNT) service for global users. The onboard BDS measurements from LEO satellites can be used for LEO POD and served as an effective supplement for BDS tracking geometry. In this study, the BDS-3 observations with B1C and B2a signals of HY-2D spacecraft are employed for reduced-dynamic POD. For superior orbit quality, the extended analytical model for solar radiation pressure (SRP) is used for LEO POD, and in-flight calibration of the LEO receiver antenna is carried out to improve the orbit precision. Two weeks of onboard BDS-3 observation were used to assess the BDS-based POD performance. For HY-2D satellite based on BDS-3 instruments, the capability of continuous tracking is at the global level, and almost all the epochs can have 5–7 usable BDS satellites. The mean root-mean-squared (RMS) of the phase residual obtained from the reduced-dynamic POD is 6.5 mm, and that of pseudorange residual is 1.28 m. The internal precision for the entire arc is in good agreement. Moreover, an orbit self-consistency of 0.94 cm, 0.76 cm, and 0.49 cm is displayed in the along-track, cross-track, and radial directions, respectively.

The 1.33 cm 3D RMS of the internal consistency is achieved for the reduced-dynamic orbits. A better than 2 cm RMS has been achieved in the Satellite Laser Ranging (SLR) validation for BDS-3-based LEO orbit solutions. These results could be used for the Chinese subsequent LEO satellite equipped with a BDS-3 receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tapley, B.D., Ries, J.C., Davis, G.W., et al.: Precision orbit determination for Topex/Poseidon. J. Geophys. Res. Oceans 99(C12), 24383–24404 (1994)

    Article  Google Scholar 

  2. Flohrer, C., Otten, M., Springer, T., et al.: Generating precise and homogeneous orbits for Jason-1 and Jason-2. Adv. Space Res. 48(1), 152–172 (2011)

    Article  Google Scholar 

  3. Montenbruck, O., Hackel, S., Jäggi, A.: Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations. J. Geodesy 92(7), 711–726 (2018)

    Article  Google Scholar 

  4. Tapley, B.D., Bettadpur, S., Ries, J.C., et al.: GRACE measurements of mass variability in the Earth system. Science 305(5683), 503–505 (2004)

    Article  Google Scholar 

  5. Kang, Z., Tapley, B., Bettadpur, S., et al.: Precise orbit determination for the GRACE mission using only GPS data. J. Geodesy 80(6), 322–331 (2006)

    Article  Google Scholar 

  6. Kornfeld, R.P., Arnold, B.W., Gross, M.A., et al.: GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission [J]. Journal Of Spacecraft And Rockets 56(3), 931–951 (2019)

    Article  Google Scholar 

  7. Bock, H., Jäggi, A., Beutler, G., et al.: GOCE: precise orbit determination for the entire mission. J. Geodesy 88(11), 1047–1060 (2014)

    Article  Google Scholar 

  8. Vielberg, K., Kusche, J.: Extended forward and inverse modeling of radiation pressure accelerations for LEO satellites. J. Geodesy 94(4), 1–21 (2020)

    Google Scholar 

  9. Jing-Nan, L., Mao-Rong, G.: PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 8(2), 603–609 (2003)

    Article  Google Scholar 

  10. Zhao, Q., Guo, J., Wang, C., et al.: Precise orbit determination for BDS satellites. Satellite Navig. 3(1), 1–24 (2022)

    Google Scholar 

  11. Rebischung, P., Schmid, R.: IGS14/igs14.atx: a new framework for the IGS products; proceedings of the AGU Fall Meeting Abstracts, F (2016)

    Google Scholar 

  12. Schmid, R., Dach, R., Collilieux, X., Jäggi, A., Schmitz, M., Dilssner, F.: Absolute IGS antenna phase center model igs08.atx: status and potential improvements. J. Geodesy 90(4), 343–364 (2015)

    Article  Google Scholar 

  13. Shako, R., Förste, C., Abrikosov, O., Bruinsma, S., Marty, J.-C., Lemoine, J.-M., Flechtner, F., Neumayer, H., Dahle, C.: EIGEN-6C: a high-resolution global gravity combination model including GOCE data. In: Flechtner, F., Sneeuw, N., Schuh, W.-D. (eds.) Observation of the System Earth from Space - CHAMP, GRACE, GOCE and future missions: GEOTECHNOLOGIEN Science Report No. 20, pp. 155–161. Springer Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-32135-1_20

    Chapter  Google Scholar 

  14. Petit, G., Luzum, B.: Bureau International des Poids et mesures sevres (france) (2010)

    Google Scholar 

  15. Lyard, F., Lefevre, F., Letellier, T., et al.: Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56(5), 394–415 (2006)

    Article  Google Scholar 

  16. ILRS: SLRF2014 station coordinates (2020)

    Google Scholar 

  17. Mendes, V.B., Pavlis, E.C.: High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett. 31(14), 1–5 (2004)

    Google Scholar 

  18. Wang, Y.C., Li, M., Jiang, K.C., et al.: Precise orbit determination of the Haiyang 2C altimetry satellite using attitude modeling. GPS Sol. 26(1), 1–14 (2022)

    Google Scholar 

  19. Wang, Y., et al.: Reduced-dynamic precise orbit determination of Haiyang-2B altimetry satellite using a refined empirical acceleration model. Remote Sensing 13(18), 3702 (2021)

    Article  Google Scholar 

  20. Jäggi, A., Dach, R., Montenbruck, O., et al.: Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J. Geodesy 83(12), 1145–1162 (2009)

    Article  Google Scholar 

  21. Dow, J.M., Neilan, R.E., Rizos, C.: The international GNSS service in a changing landscape of global navigation satellite systems. J. Geodesy 83(3–4), 191–198 (2009)

    Article  Google Scholar 

  22. Schaer, S., Villiger, A., Arnold, D., Dach, R., Prange, L., Jäggi, A.: The CODE ambiguity-fixed clock and phase bias analysis products: generation, properties, and performance. J. Geodesy 95(7), 1–25 (2021)

    Article  Google Scholar 

  23. Pearlman, M.R., et al.: The ILRS: approaching 20 years and planning for the future. J. Geodesy 93(11), 2161–2180 (2019)

    Article  Google Scholar 

  24. Guo, J.Y., Wang, Y.C., Shen, Y., et al.: Estimation of SLR station coordinates by means of SLR measurements to kinematic orbit of LEO satellites. Earth Planets Space 70(1), 201 (2018)

    Article  Google Scholar 

  25. Drożdżewski, M., Sośnica, K.: Tropospheric and range biases in Satellite Laser Ranging. J. Geodesy 95(9), 1–18 (2021)

    Google Scholar 

  26. Strugarek, D., Sośnica, K., Zajdel, R., Bury, G.: Detector-specific issues in Satellite Laser Ranging to Swarm-A/B/C satellites. Measurement 182, 109786 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Aerospace Information Research Institute

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhao, Q., Jiang, K. (2022). Precise Orbit Determination of LEO Satellite Using Onboard BDS-3 B1C/B2a Observations. In: Yang, C., Xie, J. (eds) China Satellite Navigation Conference (CSNC 2022) Proceedings. Lecture Notes in Electrical Engineering, vol 910. Springer, Singapore. https://doi.org/10.1007/978-981-19-2576-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2576-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2575-7

  • Online ISBN: 978-981-19-2576-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics