Skip to main content

Fungal Polysaccharides as Biosurfactants and Bioemulsifiers

  • Chapter
  • First Online:
Fungal Biopolymers and Biocomposites

Abstract

Fungi play a substantial role in tackling major challenges in the world. Applications of fungal processes and materials is directly related to the increase in sustainability by more efficient usage of natural resources. Filamentous fungi are useful in several industrial fermentation like production of scleroglucan, an extracellular polysaccharide formed by species of the genus Sclerotium. The polysaccharides have been reported to be used as surface-active compounds, that is, the fungal polysaccharides exhibit bioemulsifier and biosurfactant properties, giving them promising characteristics for biomedical, pharmaceutical, agricultural, food and other industries field. Due to these eco-sustainable characteristics, price as well as standardized production, fungal polysaccharides signify an alternative to replace their synthetic counterparts, making their production economically competitive and attracting the attention of the global market. On this context, this chapter focuses production of polysaccharides from different filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mohsen AM, Jancar J, Massoud D, Fohlerova Z, Elhadidy H, Spotz Z, Hebeish A (2016) Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. Int J Pharm 510:86–99

    Article  CAS  PubMed  Google Scholar 

  • Adetunji AI, Olaniran AO (2021) Production and potential biotechnological applications of microbial surfactants: an overview. Saudi J Biol Sci 28:669–679

    Article  CAS  PubMed  Google Scholar 

  • Agrawal P, Soni S, Mittal G, Bhatnagar A (2014) Role of polymeric biomaterials as wound healing agents. Int J Low Extrem Wounds 13:180–190

    Article  PubMed  CAS  Google Scholar 

  • Akila RM (2014) Fermentative production of fungal Chitosan, a versatile biopolymer (perspectives and its applications). Adv Appl Sci Res 5:157–170

    CAS  Google Scholar 

  • Amorim RVS, Melo ES, Carneiro-Da-Cunha MG, Ledingham WM, Campos-Takaki GM (2003) Chitosan from Syncephalastrum racemosum used as a film support for lipase immobilization. Bioresour Technol 89:35–39

    Article  CAS  PubMed  Google Scholar 

  • Anbazhagan S, Thangavelu KP (2018) Application of tetracycline hydrochloride loaded-fungal chitosan and Aloe vera extract based composite sponges for wound dressing. J Adv Res 14:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, Galed G, Heras Á (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  • Araujo LVD, Freire DMG, Nitschke M (2013) Biosurfactants: anticorrosive, antibiofilm and antimicrobial properties. Quim Nova 36:848–858

    Article  Google Scholar 

  • Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Barbosa AM, Steluti RM, Dekker RFH, Cardoso MS, Corradi Da Silva ML (2003) Structural characterization of Botryosphaeran: A (1→3;1→6)-β-D-glucan produced by the ascomyceteous fungus, Botryosphaeria sp. Carbohydr Res 338:1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Barreto M, Figueiredo MVB, Burity HA, Silva MLRB, Lima-Filho JL (2011) Production and rheological behavior of biopolymers produced by rhizobia and genetic characterization. Rev Bras Agrociência 17:221–227

    Google Scholar 

  • Bobbitt TF, Nordin JH (1978) Hyphal nigeran as a potential phylogenetic marker for Aspergillus and Penicillium species. Mycologia 70:1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Briechle S, Hollmann R, Kaeppler T, Lehr F, Schmidt JK, Freyer S (2016) Process for the fermentation of fungal strains. Patent WO2016091892-A1

    Google Scholar 

  • Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J (2009) Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci Total Environ 407:3634–3640

    Article  CAS  PubMed  Google Scholar 

  • Camargo-De-Morais MM, Ramos SAF, Pimentel MCB, De Morais MA, Lima Filho JL (2003) Production of an extracellular polysaccharide with emulsifier properties by Penicillium citrinum. World J Microbiol Biotechnol 19:191–194

    Article  CAS  Google Scholar 

  • Castiglioni GL, Bertolin TE, Costa JAV (2009) Solid-state biosurfactant production by Aspergillus fumigatus using agricultural residues as substrate. Quim Nova 32:292–295

    Article  CAS  Google Scholar 

  • Castillo NA, Valdez AL, Fariña JI (2015) Microbial production of scleroglucan and downstream processing. Front Microbiol 6:1–19

    Article  Google Scholar 

  • Chambergo FS, Valencia EY (2016) Fungal biodiversity to biotechnology. Appl Microbiol Biotechnol 100:2567–2577

    Article  CAS  PubMed  Google Scholar 

  • Chanchal A, Vohra R, Elesela S, Bhushan L, Kumar S, Kumar S, Ahmad S, Pandey RP (2014) Gelatin biopolymer: a journey from micro to nano. J Pharm Res 8:1387–1397

    Google Scholar 

  • Chang I, Cho GC (2012) Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer. Constr Build Mater 30:30–35

    Article  Google Scholar 

  • Chang I, Kharis A, Im J, Shin H, Cho G (2015) Geoderma Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253–254:39–47

    Article  CAS  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsaro MM, De Castro C, Evidente A, Lanzetta R, Molinaro A, Parrilli M, Sparapano L (1998) Phytotoxic extracellular polysaccharide fractions from Cryphonectria parasitica (Murr.) Barr strains. Carbohydr Polym 37:167–172

    Article  CAS  Google Scholar 

  • Coviello T, Palleschi A, Grassi M, Matricardi P, Bocchinfuso G, Alhaique F (2005) Scleroglucan: a versatile polysaccharide for modified drug delivery. Molecules 10:6–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lima DP, dos Santos E dos A, Marques MR, Giannesi GC, Beatriz A, Yonekawa MKA, Montanholi A dos S (2018) Fungal bioremediation of pollutant aromatic amines. Curr Opin Green Sustain Chem 11: 34–44

    Google Scholar 

  • de Oliveira CEV, Magnani M, de Sales CV, de Souza Pontes AL, Campos-Takaki GM, Stamford TCM, de Souza EL (2014) Effects of chitosan from Cunninghamella elegans on virulence of post-harvest pathogenic fungi in table grapes (Vitis labrusca L.). Int J Food Microbiol 171:54–61

    Article  PubMed  CAS  Google Scholar 

  • Delben F, Forabosco A, Guerrini M, Liut G, Torri G (2006) Pullulans produced by strains of Cryphonectria parasitica–II. Nuclear magnetic resonance evidence. Carbohydr Polym 63:545–554

    Article  CAS  Google Scholar 

  • Deng LJ, Qi M, Li N, Lei YH, Zhang DM, Chen JX (2020) Natural products and their derivatives: Promising modulators of tumor immunotherapy. J Leukoc Biol 108:493–508

    Article  CAS  PubMed  Google Scholar 

  • Dierickx W, De Cuyper D, Gunde-Cimerman N, Ulrih NP (2012) Method for producing a polymer product from multidimensional aggregated components as barrier or carriers of living microbial cells and biological barriers in plastic and textile. Patent WO2012145803-A2

    Google Scholar 

  • El-Oirdi M, El-Rahman TA, Rigano L, El-Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in Tomato. Plant Cell 23:2405–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans M, Ratcliffe I, Williams PA (2013) Emulsion stabilisation using polysaccharide – protein complexes. Curr Opin Colloid Interface Sci 18(4):272–282

    Article  CAS  Google Scholar 

  • Forabosco A, Bruno G, Sparapano L, Liut G, Marino D, Delben F (2006) Pullulans produced by strains of Cryphonectria parasitica - I. Production and characterisation of the exopolysaccharides. Carbohydr Polym 63:535–544

    Article  CAS  Google Scholar 

  • Freitas F, Torres CAV, Reis MAM (2017) Engineering aspects of microbial exopolysaccharide production. Bioresour Technol 245:1674–1683

    Article  CAS  PubMed  Google Scholar 

  • Geraldelli D, Ribeiro MC, Medeiros TC, Comiran PK, Martins KO, Oliveira MF, Oliveira GA, Dekker RFH, Barbosa-Dekker AM, Alegranci P, Queiroz EAIF (2020) Botryosphaeran, a (1 → 3)(1 → 6)-β-D-glucan, reduces tumor development and cachexia syndrome in obese male rats by increasing insulin sensitivity and FOXO3a activity. Int J Biol Macromol 165:985–994

    Article  CAS  PubMed  Google Scholar 

  • Giavasis I (2014) Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol 26:162–173

    Article  CAS  PubMed  Google Scholar 

  • Giese EC, Dekker RFH, Scarminio IS, Barbosa AM, da Silva R (2011) Comparison of β-1,3-glucanase production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design. Biochem Eng J 53:239–243

    Article  CAS  Google Scholar 

  • Giese EC, Gascon J, Anzelmo G, Barbosa AM, da Cunha MAA, Dekker RFH (2015) Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans. Int J Biol Macromol 72:125–130

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Mukerji KG (1982) Nigeran production in some Aspergillus and Penicillium species. Folia Microbiol (Praha) 27:38–42

    Article  CAS  Google Scholar 

  • Horisberger M, Lewis BA, Smith F (1972) Structure of a (1→3)-α-d-glucan (pseudonigeran) of Aspergillus niger NNRL 326 cell wall. Carbohydr Res 23:183–188

    Article  CAS  PubMed  Google Scholar 

  • Ishaq U, Akram MS, Iqbal Z, Rafiq M, Akrem A, Nadeem M, Shafi F, Shafiq Z, Mahmood S, Baig MA (2015) Production and characterization of novel self-assembling biosurfactants from Aspergillus flavus. J Appl Microbiol 119:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Jia C, Li P, Li X, Tai P, Liu W, Gong Z (2011) Degradation of pyrene in soils by extracellular polymeric substances (EPS) extracted from liquid cultures. Process Biochem 46:1627–1631

    Article  CAS  Google Scholar 

  • Jin X, Ning Y (2013) Extraction optimization and bioactivity of polysaccharides from Aspergillus fumigatus AF1. Carbohydr Polym 96:411–416

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Zhao S (2014) Extraction optimization and bioactivities of an extracellular polysaccharide produced by Aspergillus fumigatus. Int J Biol Macromol 68:13–17

    Article  CAS  PubMed  Google Scholar 

  • Joye IJ (2019) Cereal biopolymers for nano- and microtechnology: A myriad of opportunities for novel (functional) food applications. Trends Food Sci Technol 83:1–11

    Article  CAS  Google Scholar 

  • Kaur S, Dhillon GS (2014) The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol 40:155–175

    Article  CAS  PubMed  Google Scholar 

  • Kofuji K, Huang Y, Tsubaki K, Kokido F, Nishikawa K, Isobe T, Murata Y (2010) Preparation and evaluation of a novel wound dressing sheet comprised of β-glucan-chitosan complex. React Funct Polym 70:784–789

    Article  CAS  Google Scholar 

  • Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D (2008) Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57:359–369

    Article  CAS  PubMed  Google Scholar 

  • Kopsahelis A, Kourmentza C, Zafiri C, Kornaros M (2018) Gate-to-gate life cycle assessment of biosurfactants and bioplasticizers production via biotechnological exploitation of fats and waste oils. J Chem Technol Biotechnol 93:2833–2841

    Article  CAS  Google Scholar 

  • Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520

    Article  CAS  Google Scholar 

  • Kourmentza C, Araujo D, Sevrin C, Roma-Rodriques C, Lia Ferreira J, Freitas F, Dionisio M, Baptista PV, Fernandes AR, Grandfils C, Reis MAM (2019) Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product. Bioresour Technol 281:31–40

    Article  CAS  PubMed  Google Scholar 

  • Kumar CG, Mongolla P, Pombala S (2018) Lasiosan, a new exopolysaccharide from Lasiodiplodia sp. strain B2 (MTCC 6000): Structural characterization and biological evaluation. Process Biochem 72:162–169

    Article  CAS  Google Scholar 

  • Kurakula M, Raghavendra NN (2020) Prospection of recent chitosan biomedical trends: Evidence from patent analysis (2009–2020). Int J Biol Macromol 165:1924–1938

    Article  CAS  PubMed  Google Scholar 

  • Li H, Gao T, Wang J, Tian S, Yuan X, Zhu H (2016) Structural identification and antitumor activity of the extracellular polysaccharide from Aspergillus terreus. Process Biochem 51:1714–1720

    Article  CAS  Google Scholar 

  • Li P, Luo H, Meng J, Sun W, Wang X, Lu S, Peng Y, Zhou L (2014) Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in dioscorea zingiberensis suspension cell and seedling cultures. Electron J Biotechnol 17:156–161

    Article  Google Scholar 

  • Li R, Jiang X, Guan H (2010) Optimization of mycelium biomass and exopolysaccharides production by Hirsutella sp. in submerged fermentation and evaluation of exopolysaccharides antibacterial activity. Afr J Biotechnol 9:195–202

    CAS  Google Scholar 

  • Li W, Huang Q, Xie S, Chen G, Cao M, Zhang J, Xie L (2020) Method for improving application effect of Trichoderma in orchard. Patent CN111955485A

    Google Scholar 

  • Li Y, Wang X, Ma X, Liu C, Wu J, Sun C (2021) Natural polysaccharides and their derivates: A promising natural adjuvant for tumor immunotherapy. Front Pharmacol 12:621813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Shi J, Xu X, Zhan X, Fu B, Li Y (2017) Enhancement of sludge dewaterability with filamentous fungi Talaromyces flavus S1 by depletion of extracellular polymeric substances or mycelium entrapment. Bioresour Technol 245:977–983

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li L, Xu Q, Luo Z, Zhao Y, Fang D (2021) Optimized culture medium and culture method for producing extracellular polymer by Aspergillus niger. Patent CN112708566A

    Google Scholar 

  • Lou W, Zeng Y, Zong M, Yang J, Yang H, Cheng J (2019) A kind of method that solid state fermentation prepares high immunological activity Dendrobium candidum endogenetic fungus polysaccharide. Patent CN109234332-A

    Google Scholar 

  • Lourenço LA, Alberton Magina MD, Tavares LBB, Guelli Ulson de Souza SM. A, García Román, M, Altmajer Vaz D (2017) Biosurfactant production by Trametes versicolor grown on two-phase olive mill waste in solid-state fermentation. Environ Technol (United Kingdom) 3330: 1–11

    Google Scholar 

  • Luft L, Confortin TC, Todero I, Zabot GL, Mazutti MA (2020) An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Crit Rev Biotechnol 40:1059–1080

    Article  CAS  PubMed  Google Scholar 

  • Luft L, Confortin TC, Todero I, Roberto J, Neto C, Tonato D, Felimberti PZ, Zabot GL, Mazutti MA (2021) Different techniques for concentration of extracellular biopolymers with herbicidal activity produced by Phoma sp. Environ Technol 42:1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Luna-Velasco MA, Esparza-García F, Cañízares-Villanueva RO, Rodríguez-Vázquez R (2007) Production and properties of a bioemulsifier synthesized by phenanthrene-degrading Penicillium sp. Process Biochem 42:310–314

    Article  CAS  Google Scholar 

  • Malini M, de Souza MF, de Oliveira MT, Antunes LMG, de Figueiredo SG, Barbosa AM, Dekker RFH, Cólus IM de S (2015) Modulation of gene expression and cell cycle by botryosphaeran, a (1→3)(1→6)-β-d-glucan in human lymphocytes. Int J Biol Macromol 77: 214–221

    Google Scholar 

  • Mendes SF, dos Santos O, Barbosa AM, Vasconcelos AF, Aranda-Selverio G, Monteiro NK, Dekker RF, Sá Pereira M, Tovar AM, Mourão PA, da Silva ML (2009) Sulfonation and anticoagulant activity of botryosphaeran from Botryosphaeria rhodina MAMB-05 grown on fructose. Int J Biol Macromol 45:305–309

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Nantes CCBO, Fonseca EAI, Zaia CTBV, Dekker RFH, Khaper N, Castro IA, Barbosa AM (2011) Hypoglycemic and hypocholesterolemic effects of botryosphaeran from Botryosphaeria rhodina MAMB-05 in diabetes-induced and hyperlipidemia conditions in rats. Mycobiology 39:187–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda CCBO, Dekker RFH, Serpeloni JM, Fonseca EAI, Cólus IMS, Barbosa AM (2008) Anticlastogenic activity exhibited by botryosphaeran, a new exopolysaccharide produced by Botryosphaeria rhodina MAMB-05. Int J Biol Macromol 42:172–177

    Article  CAS  PubMed  Google Scholar 

  • Misaki A, Tsumuraya Y, Kakuta M (2000) Elsinan, a potential food hydrocolloid produced by elsinoe species; properties and enzymatic degradation. Hydrocolloids 1:205–214

    Article  CAS  Google Scholar 

  • Mislovičová D, Masárová J, Bendžálová K, Šoltés L, MacHová E (2000) Sonication of chitin-glucan, preparation of water-soluble fractions and characterization by HPLC. Ultrason Sonochem 7:63–68

    Article  PubMed  Google Scholar 

  • More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manag 144:1–25

    Article  CAS  Google Scholar 

  • Morita T, Ishibashi Y, Hirose N, Wada K, Takahashi M, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011) Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem 75:1371–1376

    Article  CAS  PubMed  Google Scholar 

  • Nge KL, Nwe N, Chandrkrachang S, Stevens WF (2006) Chitosan as a growth stimulator in orchid tissue culture. Plant Sci 170:1185–1190

    Article  CAS  Google Scholar 

  • Nitschke M, Araújo LV, Costa SGVAO, Pires RC, Zeraik AE, Fernandes ACLB, Freire DMG, Contiero J (2009) Surfactin reduces the adhesion of food-borne pathogenic bacteria to solid surfaces. Lett Appl Microbiol 49:241–247

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Pastore GM (2002) Biossurfactantes: propriedades e aplicações. Quim Nova 25:772–776

    Article  CAS  Google Scholar 

  • Orlandelli RC, Corradi da Silva M de L, Vasconcelos AFD, Almeida IV, Vicentini VEP, Prieto A, Hernandez MDD, Azevedo JL, Pamphile JA (2017) β-(1→3,1→6)-D-glucans produced by Diaporthe sp. endophytes: purification, chemical characterization and antiproliferative activity against MCF-7 and HepG2-C3A cells. Int J Biol Macromol 94: 431–437

    Google Scholar 

  • Orts WJ, Sojka RE, Glenn GM (2000) Biopolymer additives to reduce erosion-induced soil losses during irrigation. Ind Crop Prod 11:19–29

    Article  CAS  Google Scholar 

  • Osińska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Ściseł J, Szałapata K, Nowak A, Jaszek M, Ozimek E, Majewska M (2015) Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol 31:1823–1844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paraszkiewicz K, Kanwal A, Dlugoński J (2002) Emulsifier production by steroid transforming filamentous fungus Curvularia lunata. Growth and product characterization. J Biotechnol 92:287–294

    Article  CAS  PubMed  Google Scholar 

  • Park JK, Khan T (2009) Other microbial polysaccharides: Pullulan, scleroglucan, elsinan, levan, alternant, dextran. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, vol 21, 2nd edn, pp 592–614

    Chapter  Google Scholar 

  • Peij VNNM, Hans M, Beishuizen M, Schipper D, Hoeven VDRAM, Schouten OL (2012) A method for the production of a compound of interest. Patent WO2012001169-A1

    Google Scholar 

  • Pele MA, Montero-Rodriguez D, Rubio-Ribeaux D, Souza AF, Luna MAC, Santiago MF, Andrade RFS., Lima e Silva TA S, Santiago ALCMA, Campos-Takaki M (2018) Development and improved selected markers to biosurfactant and bioemulsifier production by Rhizopus strains isolated from Caatinga soil. African J Biotechnol 17:150–157

    Article  CAS  Google Scholar 

  • Pessôa MG, Vespermann KAC, Paulino BN, Barcelos MCS, Pastore GM, Molina G (2019) Newly isolated microorganisms with potential application in biotechnology. Biotechnol Adv 37:319–339

    Article  PubMed  CAS  Google Scholar 

  • Pires A do RA, Ruthes AC, Cadena SMSC, Acco A, Gorin PAJ, Iacomini M (2013) Cytotoxic effect of Agaricus bisporus and Lactarius rufus β-d-glucans on HepG2 cells. Int J Biol Macromol 58: 95–103

    Google Scholar 

  • Pontarolo R, Picheth GF, Camarozano AC, de Freitas RA, Sierakowski MR, Kaminski GAT, Pirich CL, dos Santos LA (2014) Gas-core microvesicles composed of phospholipids and biopolymers. Patent BR102014028264- A2

    Google Scholar 

  • Qazi MA, Kanwal T, Jadoon M, Ahmed S, Fatima N (2014) Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil. Biotechnol Prog 30:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Qazi MA, Subhan M, Fatima N, Ali MI, Ahmed S (2013) Role of biosurfactant produced by Fusarium sp. BS-8 in enhanced oil recovery (EOR) through sand pack column. Int J Biosci Biochem Bioinforma 3:598–604

    CAS  Google Scholar 

  • Quintana-Quirino M, Morales-Osorio C, Vigueras Ramírez G, Vázquez-Torres H, Shirai K (2019) Bacterial cellulose grows with a honeycomb geometry in a solid-state culture of Gluconacetobacter xylinus using polyurethane foam support. Process Biochem 82:1–9

    Article  CAS  Google Scholar 

  • Ranganathan S, Balagangadharan K, Selvamurugan N (2019) Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 133:354–364

    Article  CAS  PubMed  Google Scholar 

  • Restanto DP, Santoso B, Kriswanto B, Supardjono S (2016) The application of chitosan for protocorm like bodies (PLB) induction of orchid (Dendrobium sp) in vitro. Agric Agric Sci Procedia 9:462–468

    Google Scholar 

  • Rollie S, Kaeppler T, Schalb C, Lehr F, Hlubek A, Therre J, Fleck C, Letzelter T, Freyer S, Herold A, Rettenmaier H, Leonhardt B (2016) Method for preparing an aqueous solution of beta-glucan. Patent WO2016087521-A1

    Google Scholar 

  • Ruiz-Herrera J, Ortiz-Castellanos L (2019) Cell wall glucans of fungi. A review. Cell Surf 5:100022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacchelli BAL, Faccin-Galhardi LC, Ito VY, Lopes JL, Dekker RFH, Barbosa-Dekker AM, Orsato A (2019) Botryosphaeran and sulfonated derivatives as novel antiviral agents for herpes simplex and dengue fever. Int J Biol Macromol 138:334–339

    Article  CAS  PubMed  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sałek K, Euston SR (2019) Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem 85:143–155

    Article  CAS  Google Scholar 

  • Sánchez-Vázquez V, Shirai K, González I, Gutiérrez-Rojas M (2018) Polycyclic aromatic hydrocarbon-emulsifier protein produced by Aspergillus brasiliensis (niger) in an airlift bioreactor following an electrochemical pretreatment. Bioresour Technol 256:408–413

    Article  PubMed  CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: Multifunctional biomolecules of the 21st century. Int J Mol Sci 17:1–31

    Article  CAS  Google Scholar 

  • Schmid J, Meyer V, Sieber V (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91:937–947

    Article  CAS  PubMed  Google Scholar 

  • Sharif R, Mujtaba M, Rahman MU, Shalmani A, Ahmad H, Anwar T, Tianchan D, Wang X (2018) The multifunctional role of chitosan in horticultural crops; a review. Molecules 23:1–20

    Google Scholar 

  • Shoham Y, Rosenberg M, Rosenberg E (1983) Bacterial degradation of emulsan. Appl Environ Microbiol 46:573–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Sena GG, Malini M, Delarmelina JM, Dutra JCV, Gervásio SV, Leal MAS, Costa Pereira T de M, Barbosa-Dekker AM, Dekker RFH, de Paula F, Batitucci M do CP (2018) In vivo antimutagenic and antiatherogenic effects of the (1 → 3)(1 → 6)-β-D- glucan botryosphaeran. Mutat Res - Genet Toxicol Environ Mutagen 826: 6–14

    Google Scholar 

  • Silva NRA, Luna MAC, Santiago ALCMA, Franco LO, Silva GKB, de Souza PM, Okada K, Albuquerque CDC, da Silva CAA, Campos-Takaki GM (2014) Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from caatinga soil in the Northeast of Brazil. Int J Mol Sci 15:15377–15395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Saini GK (2012) Biosynthesis of pullulan and its applications in food and pharmaceutical industry. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in sustainable agriculture and biotechnology, vol 24, pp 509–553

    Chapter  Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2021) Pullulan production in stirred tank reactor by a colour-variant strain of Aureobasidium pullulans FB-1. Carbohydr Polym Technol Appl 2:100086

    CAS  Google Scholar 

  • Stamford NP, Santos CERS, Stamford TCM, Franco LC, Arnaud TMS, Berger LRR (2015) Biofertilizer and bioprotector with fungal chitosan produced from mixed biofertilizers with phosphate and potassic rocks inoculated with bacteria acidithium and dyratic bethycatine butterials. Patent BR1020130030430

    Google Scholar 

  • Subramanian SB, Yan S, Tyagi RD, Surampalli RY (2008) A new, pellet-forming fungal: its isolation, molecular identification, andp erformance for simultaneous sludge-solids reduction, flocculation, and dewatering. Water Environ Res 80:840–852

    Article  CAS  PubMed  Google Scholar 

  • Sugumaran KR, Ponnusami V (2017) Review on production, downstream processing and characterization of microbial pullulan. Carbohydr Polym 173:573–591

    Article  CAS  Google Scholar 

  • Survase SA, Saudagar PS, Bajaj IB, Singhal RS (2007) Gellan gum: Fermentative production, downstream processing and applications. Food Technol Biotechnol 45:107–118

    CAS  Google Scholar 

  • Synytsya A, Novák M (2013) Structural diversity of fungal glucans. Carbohydr Polym 92:792–809

    Article  CAS  PubMed  Google Scholar 

  • Tayel AA, Ibrahim SIA, Al-Saman MA, Moussa SH (2014) Production of fungal chitosan from date wastes and its application as a biopreservative for minced meat. Int J Biol Macromol 69:471–475

    Article  CAS  PubMed  Google Scholar 

  • Theis TV, Calegari GC, Santos VAQ, Zorel Junior HE, Barbosa AM, Dekker RFH (2017) Exocellular (1→6)-β-D-glucan (lasiodiplodan): carboxymethylation, thermal behavior, antioxidant and antimicrobial activity. Am J Immunol 13:19–33

    Article  CAS  Google Scholar 

  • Todero I, Confortin TC, Luft L, Seibel J, Kuhn RC, Tres MV, Zabot GL, Mazutti MA (2020) Concentration of exopolysaccharides produced by Fusarium fujikuroi and application of bioproduct as an effective bioherbicide. Environ Technol 41:2742–2749

    Article  CAS  PubMed  Google Scholar 

  • Tsumuraya Y, Misaki A, Takaya S, Torii M (1978) A New Fungal α-D-glucan, elsinan, elaborated by Elsinoe leucospila. Carbohydr Res 66:53–65

    Article  CAS  Google Scholar 

  • U.S. Congress, Office of Technology Assessment (1993) Biopolymers: Making Materials Nature’s Way-Background Paper, OTA-BP-E-102 (Washington, DC: U.S. Government Printing Office, September 1993)

    Google Scholar 

  • Uzoigwe C, Burgess JG, Ennis CJ, Rahman PKSM (2015) Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiol 6:1–6

    Article  Google Scholar 

  • Vanangamudi SS, Srinivasan M, Chulliel NN, Selvaraj B (2012) A medicinal fusidic acid cream made using sodium fusidate and incorporating a biopolymer, mometasone as a corticosteroid and clotrimazol as antifungal agent, and a process to make it. Patent WO2012049542-A1

    Google Scholar 

  • Vijayakumar S, Saravanan V (2015) Biosurfactants-types, sources and applications. Int J Microbiol Res 10:181–192

    Google Scholar 

  • Wang T, Deng L, Li S, Tan T (2007) Structural characterization of a water-insoluble (1→3)-α-d-glucan isolated from the Penicillium chrysogenum. Carbohydr Polym 67:133–137

    Article  CAS  Google Scholar 

  • Wang Z, Zheng G, Zhou L (2015) Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1. Bioresour Technol 192:514–521

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Chen X, Wang D, Wang C (2021) Aureobasidium pullulans with improved beta-glucan yield and application thereof. Patent CN112175843A

    Google Scholar 

  • Weng BBC, Lin YC, Hu CW, Kao MY, Wang SH, Lo DY, Lai TY, Kan LS, Chiou RYY (2011) Toxicological and immunomodulatory assessments of botryosphaeran (β-glucan) produced by Botryosphaeria rhodina RCYU 30101. Food Chem Toxicol 49:910–916

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE (2005) Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem 53:3888–3894

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Qi H, Wang Z, Ma Y, Yang H, Xie H, Ma Y, Zhao Z, Zhao J, Fang Y (2021) Aspergillus sydowii and application thereof in promoting plant growth and preventing and treating plant diseases. Patent CN112680360A

    Google Scholar 

  • Yin S, Xie P, Qu H (2019) A kind of exopolysaccharide production from the fermentation waste liquid and sophorolipid complex biological emulsifier and preparation method and application. Patent CN109876731A

    Google Scholar 

  • Yin Y, Hu Y, Xiong F (2011) Sorption of Cu(II) and Cd(II) by extracellular polymeric substances (EPS) from Aspergillus fumigatus. Int Biodeterior Biodegradation 65:1012–1018

    Article  CAS  Google Scholar 

  • Yu X, Zhou CP (2021) Aspergillus galactomannan detect reagent box. Patent CN212533004U

    Google Scholar 

  • Yuan, T, 2018. A kind of glucan-Glucomannan compound. Patent CN108938455A

    Google Scholar 

  • Zhou Y, Jing M, Levy A, Wang H, Jiang S, Dou D (2020) Molecular mechanism of nanochitin whisker elicits plant resistance against Phytophthora and the receptors in plants. Int J Biol Macromol 165:2660–2667

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luft, L. (2022). Fungal Polysaccharides as Biosurfactants and Bioemulsifiers. In: Deshmukh, S.K., Deshpande, M.V., Sridhar, K.R. (eds) Fungal Biopolymers and Biocomposites. Springer, Singapore. https://doi.org/10.1007/978-981-19-1000-5_7

Download citation

Publish with us

Policies and ethics