Skip to main content

Molecular Insights into Wing Polymorphism and Migration Patterns of rice Planthoppers

  • Chapter
  • First Online:
Genetic Methods and Tools for Managing Crop Pests

Abstract

Planthoppers are major plant pests in several cultivated ecosystems worldwide. In most situations, like the rice ecosystems in Asia, they represent a complex of cryptic species. They inflict direct as well as indirect damage on rice by serving as disease-causing virus vectors. Planthoppers are seasonal migrants, of which economically important pests, such as Nilaparvata lugens, Sogatella furcifera, and Laodelphax striatellus, show wing dimorphism. Long-winged morphs are suitable for long-distance migration, while short-winged morphs for local colonization. The wing polyphenism is regulated by environmental cues, host plant nutrition, and other abiotic factors. Juvenile hormone, miRNA, insulin receptors pathway, and 20-hydroxy ecdysone form an autoregulatory feedback loop to regulate wing polyphenism in N. lugens. In India and other countries in Southeast Asia, rice planthoppers are seasonal migrants from south to north. Specifically, Indochinese peninsular region is the main source of N. lugens migratory population to temperate part of China and most probably to Japan. Similarly, the Greater Mekong Subregion (GMS) is the source of migratory population of S. furcifera to Yunan province of China. Migratory pathways of planthoppers have been elucidated efficiently with nuclear (simple sequence repeats, single nucleotide polymorphism) markers, mitochondrial (MtCo1) markers, and recently with more powerful whole-genome sequencing by evaluating genetic structure of different populations. Understanding migratory behavior of planthoppers will help in developing effective pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asche M (1985) Zur phylogenie der Delphacidae Leach, 1815 (Homoptera Cicadina Fulgoromorpha). Goecke u. Evers. Marburger Entomologische Publikationen 2(1):1–910

    Google Scholar 

  • Avise JC (1994) Molecular markers, natural history, and evolution. Chapman and Hal, London

    Book  Google Scholar 

  • Bourgoin T (2019) FLOW (Fulgoromorpha Lists on The Web): a world knowledge base dedicated to Fulgoromorpha. Version 8, updated 31 October, 2019. Available from http://hemiptera-databases.org/flow/. Accessed 6 Nov 2019]

  • Cabauatan PQ, Cabunagan RC, Choi IR (2009) Rice viruses transmitted by the brown planthopper Nilaparvata lugens Stål. In: Planthoppers: New threats to the sustainability of intensive rice production systems in Asia, pp 357–368

    Google Scholar 

  • Denno RF, Roderick GK (1990) Population biology of planthoppers. Annu rev entomol 35(1):489–520

    Article  Google Scholar 

  • Distant WL (1906) Rhynchota Vol. III. (Heteroptera – Homoptera). In: Bingham CT (ed) The Fauna of British India, including Ceylon and Burma. Taylor & Francis, London, pp 1–503

    Google Scholar 

  • Dubrovsky EB, Bernardo TJ (2014) The juvenile hormone receptor and molecular mechanisms of juvenile hormone action. In: Advances in insect physiology, vol 46. Academic Press, pp 305–388

    Google Scholar 

  • Falk BW, Tsai JH (1998) Biology and molecular biology ofviruses in the genus tenuivirus. Annu Rev Phytopathol 36:139–163. https://doi.org/10.1146/annurev.phyto.36.1.139

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Fu Y, Ajayi OE, Guo D, Zhang L, Wu Q (2019) Identification of genes underlying phenotypic plasticity of wing size via insulin signaling pathway by network-based analysis in Sogatella furcifera. BMC Genomics 20(1):396. https://doi.org/10.1186/s12864-019-5793-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison RG (1980) Dispersal polymorphisms in insects. Annu Rev Ecol Systemat 11(1):95–118

    Article  Google Scholar 

  • Hereward J, Cai X, Matias A, Walter G, Xu C, Wang Y (2020) Migration dynamics of an important rice pest: the brown planthopper (Nilaparvata lugens) across Asia - insights from population genomics. Evol Appl 13(9):2449–2459. https://doi.org/10.1111/eva.13047

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu QL, Zhuo JC, Ye YX, Li DT, Lou YH, Zhang XY, Chen X, Wang SL, Wang ZC, Lu JB, Mazlan N (2019) Whole genome sequencing of 358 brown planthoppers uncovers the landscape of their migration and dispersal worldwide. bioRxiv:798876

    Google Scholar 

  • Iwanaga K, Tojo S (1986) Effects of juvenile hormone and rearing density on wingdimorphism and oocyte development in the brown planthopper, Nilaparvata lugens. J Insect Physiol 32:585–590

    Article  CAS  Google Scholar 

  • Jiang CX, Wu JJ, Qi HH, Zhang YH, Cheng DF (2012) Occurrence dynamic and trajectory analysis of Nilaparvata lugens in Xing'an, Guangxi. Acta Phytophylacica Sinica 39:523–530

    Google Scholar 

  • Kisimoto R (1956) Effect of crowding during the larval period on the determination of the wing-form of an adult plant-hopper. Nature 178(4534):641–642

    Article  Google Scholar 

  • Langellotto GA, Denno RF, Ott JR (2000) A trade‐off between flight capability and reproduction in males of a wing‐dimorphic insect. Ecology 81(3):865–875

    Article  Google Scholar 

  • Li XY, Chu D, Yin YQ, Zhao XQ, Chen AD, Khay S et al (2016) Possible source populations of the white-backed planthopper in the Greater Mekong Subregion revealed by mitochondrial DNA analysis. Sci Rep 6:39167

    Article  CAS  Google Scholar 

  • Lin X, Yao Y, Wang B, Lavine MD, Lavine LC (2016) FOXO links wing form polyphenism and wound healing in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 70:24–31. https://doi.org/10.1016/j.ibmb.2015.12.002. Epub 2015 Dec 13

    Article  CAS  PubMed  Google Scholar 

  • Liu JN, Gui FR, Li ZY (2010) Genetic diversity of the planthopper, Sogatella furcifera in the Greater Mekong Subregion detected by inter-simple sequence repeats (ISSR) markers. J Insect Sci 10:52. https://doi.org/10.1673/031.010.5201

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Li X, Zhao M, Guo M, Han K, Dong X, Zhao J, Cai W, Zhang Q, Hua H (2020) Ultrabithorax is a key regulator for the dimorphism of wings, a main cause for the outbreak of planthoppers in rice. Natl Sci Rev 7(7):1181–1189

    Article  CAS  Google Scholar 

  • Masaki S, Shimizu T (1995) Variability in wing form in crickets. Res Popul Ecol 37:119–128

    Article  Google Scholar 

  • Matsumura M (1996) Genetic analysis of a threshold trait: density-dependent wing dimorphism in Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), the whitebacked planthopper. Heredity 76(3):229–237

    Article  Google Scholar 

  • Morin PA, Martien KK, Taylor BL (2009) Assessing statistical power of SNPs for population structure and conservation studies. Mol Ecol Resour 9(1):66–73

    Article  CAS  Google Scholar 

  • Narayana S, Chander S, Doddachowdappa S, Sabtharishi S, Divekar P (2022) Seasonal variation in population and biochemical contents of brown planthopper, Nilaparvata lugens (Stål). J Environ Biol 43(1):52–58

    Article  CAS  Google Scholar 

  • Ramya N, Bartlett C, Meshram NM (2020) Two new species of planthoppers from India (Hemiptera: Auchenorrhyncha: Delphacidae) in the genera Parasogata and Eoeurysa. Eur J Taxon 724:93–108

    Article  Google Scholar 

  • Ramya N, Meshram NM (2019) New record of the genus Bambusiphaga (Hemiptera: Delphacidae: Tropidocephalini) from India with description of a new species. Zootaxa 4658(1):197–200. https://doi.org/10.11646/zootaxa.4658.1.13

    Article  Google Scholar 

  • Rao VRS, Chalam MSV (2006) Biodiversity of planthopper fauna (Delphacidae: Hemiptera) associated with rice and sugarcane crop-ecosystems in South India. Hexapoda 14(2):129–141

    Google Scholar 

  • Riley JR, Reynolds DR, Smith AD, Rosenberg LJ, Xia-nian C, Xiao-xi Z et al (1994) Observations on the autumn migration of Nilaparvata lugens (Homoptera: Delphacidae) and other pests in east Central China. Bull Entomol Res 84(3):389–402

    Article  Google Scholar 

  • Roff DA, Fairbairn DJ (2007) The evolution and genetics of migration in insects. Biosci 57(2):155–164

    Article  Google Scholar 

  • Roff DA (1984) The evolution of life history parameters in teleosts. Can J Fish Aquat Sci 41(6):989–1000

    Article  Google Scholar 

  • Roff DA (1986) The evolution of wing dimorphism in insects. Evol 40:1009–1020

    Article  Google Scholar 

  • Roff DA, Fairbairn DJ (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am Zool 31(1):243–251

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  Google Scholar 

  • Shen HM, Chen X, Hu G, Cheng XN, Zhang XX, Zhai BP (2011) Analysis on the early immigration of rice planthoppers in southern Guangxi in 2008. Chin J Appl Entomol 48:1268–1277

    Google Scholar 

  • Srinivasa N, Chander S, Chandel RK (2020) Genetic homogeneity in brown planthopper, Nilaparvata lugens (Stål) as revealed from mitochondrial cytochrome oxidase I. Curr Sci 00113891:(6)

    Google Scholar 

  • Tong X, Hou L, He W, Mei C, Huang B, Zhang C, Hu C, Wang C (2020) Whole genome sequence analysis reveals genetic structure and X-chromosome haplotype structure in indigenous Chinese pigs. Sci Rep 10(1):1–10

    Article  Google Scholar 

  • Xu HJ, Xue J, Lu B, Zhang XC, Zhuo JC, He SF, Ma XF, Jiang YQ, Fan HW, Xu JY, Ye YX, Pan PL, Li Q, Bao YY, Nijhout HF, Zhang CX (2015) Twoinsulin receptors determine alternative wing morphs in planthoppers. Nature 519:464–467

    Article  CAS  Google Scholar 

  • Xue J, Zhang XQ, Xu HJ, Fan HW, Huang HJ, Ma XF et al (2013) Molecular characterization of the flightin gene in the wing-dimorphic planthopper, Nilaparvata lugens, and its evolution in Pancrustacea. Insect Biochem Mol Biol 43(5):433–443

    Article  CAS  Google Scholar 

  • Yang N, Dong Z, Chen A, Yin Y, Li X, Chu D (2020) Migration of Sogatella furcifera between the Greater Mekong Subregion and northern China revealed by mtDNA and SNP. BMC Evol Biol 20(1):1–10

    Article  CAS  Google Scholar 

  • Ye X, Xu L, Li X, He K, Hua H, Cao Z et al (2019) miR-34 modulates wing polyphenism in planthopper. PLoS Genet 15(6):e1008235

    Article  CAS  Google Scholar 

  • Zera AJ, Brink T (2000) Nutrient absorption and utilization by wing and flight muscle morphs of the cricket Gryllus firmus: implications for the trade-off between flight capability and early reproduction. J Insect Physiol 46(8):1207–1218

    Article  CAS  Google Scholar 

  • Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol 42:207–230

    Article  CAS  Google Scholar 

Further Reading

  • Bisht DS, Bhatia V, Bhattacharya R (2019) Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing. In: Seminars in cell & developmental biology, vol 96. Academic Press, pp 65–76

    Google Scholar 

  • Divya D, Sahu N, Reddy PS, Nair S, Bentur JS (2021) RNA- sequencing reveals differentially expressed rice genes functionally associated with defense against BPH and WBPH in RILS derived from a cross between RP2068 and TN1. RICE 14(27):21. https://doi.org/10.1186/s12284-021-0070-30

    Article  Google Scholar 

  • Horgan FG (2021) Elevated temperatures diminish the effects of a highly resistant rice variety on the brown plant hopper. Scientific Reports 11:262

    Article  CAS  Google Scholar 

  • Makkar GS, Bhatia D, Suri KS, Kaur S (2019) Insect resistance in Rice (Oryza sativa L.): overview on current breeding interventions. Int J Trop Insect Sci 39(4):259–272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Narayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, S., Narayana, S., Singh, R.N., Gowda, G.B. (2022). Molecular Insights into Wing Polymorphism and Migration Patterns of rice Planthoppers. In: Chakravarthy, A.K. (eds) Genetic Methods and Tools for Managing Crop Pests. Springer, Singapore. https://doi.org/10.1007/978-981-19-0264-2_17

Download citation

Publish with us

Policies and ethics