Skip to main content

Clinical and Basic Biology of Werner Syndrome, the Model Disease of Human Aging

  • Chapter
  • First Online:
Aging Mechanisms II

Abstract

Werner syndrome is an autosomal recessive genetic disorder first described in 1904 by Otto Werner, a German ophthalmologist. It is considered the representative progeroid syndrome because various signs of aging, such as gray hair, cataracts, diabetes, and skin ulcers, appear after puberty. The onset of the disease begins in the 20s or 30s, leading to diabetes and atherosclerosis, and death in mid-50s due to myocardial infarction or malignant tumors. The number of patients in Japan is estimated to be between 700 and 2000, and 60% of the world’s reports are from Japan, suggesting that this accelerated aging disease is more common in Japan. The cause of Werner syndrome was identified in 1996 as a mutation in the WRN gene, a RECQ helicase located in chromosome 8. Since then, various studies have shown that the syndrome is associated with decreased DNA damage repair and genomic instability, shortened telomeres, chronic inflammation due to cellular senescence- and senescence-associated secretory phenotype (SASP), decreased mitochondrial function and accumulation of oxidative stress, stem cell senescence, and epigenetic changes. While most premature aging syndromes occur in childhood and involve a growth and developmental disorder, only Werner syndrome occurs after normal growth and puberty, suggesting that this syndrome is a model of human aging. The elucidation of the pathogenesis and molecular mechanisms of this disease and the development of a treatment strategy are expected to lead to the elucidation of the pathogenesis of general human aging and of aging-related diseases such as diabetes and malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aithal GP, Thomas JA, Kaye PV, Lawson A, Ryder SD, Spendlove I et al (2008) Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 135(4):1176–1184

    Article  CAS  PubMed  Google Scholar 

  • Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J et al (2006) A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355(22):2297–2307

    Article  CAS  PubMed  Google Scholar 

  • Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277(52):50934–50940

    Article  CAS  PubMed  Google Scholar 

  • Cavallazzi C, Cremoncini R, Quadri A (1960) [On a case of cleidocranial dysostosis]. Riv Clin Pediatr 65:312–26

    Google Scholar 

  • Chan EM, Shibue T, McFarland JM, Gaeta B, Ghandi M, Dumont N et al (2019) WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568(7753):551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D et al (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36(8):877–882

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O, Shafeghati Y et al (2003a) LMNA mutations in atypical Werner’s syndrome. Lancet 362(9382):440–445

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Huang S, Lee L, Davalos A, Schiestl RH, Campisi J et al (2003b) WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2(4):191–199

    Article  PubMed  Google Scholar 

  • Cheng WH, von Kobbe C, Opresko PL, Arthur LM, Komatsu K, Seidman MM et al (2004) Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279(20):21169–21176

    Article  CAS  PubMed  Google Scholar 

  • Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J (2007) Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci U S A 104(7):2205–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Jentoft AJ, Dawson Hughes B, Scott D, Sanders KM, Rizzoli R (2020) Nutritional strategies for maintaining muscle mass and strength from middle age to later life: a narrative review. Maturitas 132:57–64

    Article  PubMed  Google Scholar 

  • Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J et al (2007) The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. J Biol Chem 282(36):26591–26602

    Article  CAS  PubMed  Google Scholar 

  • Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S et al (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83(4):655–666

    Article  CAS  PubMed  Google Scholar 

  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298

    Article  CAS  PubMed  Google Scholar 

  • Fang EF, Hou Y, Lautrup S, Jensen MB, Yang B, SenGupta T et al (2019) NAD(+) augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat Commun 10(1):5284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedrich K, Lee L, Leistritz DF, Nurnberg G, Saha B, Hisama FM et al (2010) WRN mutations in Werner syndrome patients: genomic rearrangements, unusual intronic mutations and ethnic-specific alterations. Hum Genet 128(1):103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futami K, Takagi M, Shimamoto A, Sugimoto M, Furuichi Y (2007) Increased chemotherapeutic activity of camptothecin in cancer cells by siRNA-induced silencing of WRN helicase. Biol Pharm Bull 30(10):1958–1961

    Article  CAS  PubMed  Google Scholar 

  • Garcia V, Phelps SE, Gray S, Neale MJ (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479(7372):241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng L, Liu Z, Zhang W, Li W, Wu Z, Wang W et al (2019) Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell 10(6):417–435

    Article  CAS  PubMed  Google Scholar 

  • Gilson E, Geli V (2007) How telomeres are replicated. Nat Rev Mol Cell Biol 8(10):825–838

    Article  CAS  PubMed  Google Scholar 

  • Goto M (1997) Hierarchical deterioration of body systems in Werner’s syndrome: implications for normal ageing. Mech Ageing Dev 98(3):239–254

    Article  CAS  PubMed  Google Scholar 

  • Goto M (2000) Werner’s syndrome: from clinics to genetics. Clin Exp Rheumatol 18(6):760–766

    CAS  PubMed  Google Scholar 

  • Goto M, Matsuura M (2008) Secular trends towards delayed onsets of pathologies and prolonged longevities in Japanese patients with Werner syndrome. Biosci Trends 2(2):81–87

    PubMed  Google Scholar 

  • Goto M, Yamabe Y, Shiratori M, Okada M, Kawabe T, Matsumoto T et al (1999) Immunological diagnosis of Werner syndrome by down-regulated and truncated gene products. Hum Genet 105(4):301–307

    Article  CAS  PubMed  Google Scholar 

  • Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM et al (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17(1):100–103

    Article  CAS  PubMed  Google Scholar 

  • Grundy GJ, Rulten SL, Arribas-Bosacoma R, Davidson K, Kozik Z, Oliver AW et al (2016) The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins. Nat Commun 7:11242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy OT, Czech MP, Corvera S (2012) What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 19(2):81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatamochi A, Arakawa M, Takeda K, Ueki H (1994) Activation of fibroblast proliferation by Werner’s syndrome fibroblast-conditioned medium. J Dermatol Sci 7(3):210–216

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Kasai M, Namatame T, Hattori Y, Kasai K (2004) Pioglitazone treatment of insulin resistance in a patient with Werner’s syndrome. Diabetes Care 27(12):3021–3022

    Article  PubMed  Google Scholar 

  • HO osteoporosis prevention and treatment guideline (2015) Edition (in Japanese), Committee for making osteoporosis prevention and treatment guidelines

    Google Scholar 

  • Honjo S, Yokote K, Fujishiro T, Maezawa Y, Sato S, Koshizaka M et al (2008) Early amelioration of insulin resistance and reduction of interleukin-6 in Werner syndrome using pioglitazone. J Am Geriatr Soc 56(1):173–174

    Article  PubMed  Google Scholar 

  • Huang S, Beresten S, Li B, Oshima J, Ellis NA, Campisi J (2000) Characterization of the human and mouse WRN 3′→ 5′ exonuclease. Nucleic Acids Res 28(12):2396–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M et al (2006) The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 27(6):558–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim B, Sheerin AN, Jennert-Burston K, Bird JL, Massala MV, Illsley M et al (2016) Absence of premature senescence in Werner’s syndrome keratinocytes. Exp Gerontol 83:139–147

    Article  CAS  PubMed  Google Scholar 

  • Ide S, Yamamoto M, Takemoto M, Fujimoto M, Ide K, Kobayashi K et al (2016) Improved glycemic control and vascular function and reduction of abdominal fat accumulation with liraglutide in a case of Werner syndrome with diabetes mellitus. J Am Geriatr Soc 64(3):687–688

    Article  PubMed  Google Scholar 

  • Imano E, Kanda T, Kawamori R, Kajimoto Y, Yamasaki Y (1997) Pioglitazone-reduced insulin resistance in patient with Werner syndrome. Lancet 350(9088):1365

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa N, Nakamura K, Izumiyama-Shimomura N, Aida J, Ishii A, Goto M et al (2011) Accelerated in vivo epidermal telomere loss in Werner syndrome. Aging (Albany NY) 3(4):417–429

    Article  Google Scholar 

  • Izumino K, Sakamaki H, Ishibashi M, Takino H, Yamasaki H, Yamaguchi Y et al (1997) Troglitazone ameliorates insulin resistance in patients with Werner’s syndrome. J Clin Endocrinol Metab 82(8):2391–2395

    CAS  PubMed  Google Scholar 

  • Johnson JE, Cao K, Ryvkin P, Wang LS, Johnson FB (2010) Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Res 38(4):1114–1122

    Article  CAS  PubMed  Google Scholar 

  • Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106(4):473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato H, Maezawa Y, Takayama N, Ouchi Y, Kaneko H, Kinoshita D et al (2021a) Fibroblasts from different body parts exhibit distinct phenotypes in adult progeria Werner syndrome. Aging (Albany NY) 13(4):4946–4961

    Article  CAS  Google Scholar 

  • Kato H, Maezawa Y, Ouchi Y, Takayama N, Sone M, Sone K et al (2021b) Generation of disease-specific and CRISPR/Cas9-mediated gene-corrected iPS cells from a patient with adult progeria Werner syndrome. Stem Cell Res 53:102360

    Article  CAS  PubMed  Google Scholar 

  • Kitade H, Chen G, Ni Y, Ota T (2017) Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients 9(4):387

    Article  PubMed Central  CAS  Google Scholar 

  • Kitamoto T, Takemoto M, Fujimoto M, Ishikawa T, Onishi S, Okabe E et al (2012) Sitagliptin successfully ameliorates glycemic control in Werner syndrome with diabetes. Diabetes Care 35(12):e83

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitano K, Kim SY, Hakoshima T (2010) Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 18(2):177–187

    Article  CAS  PubMed  Google Scholar 

  • Kitao S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM et al (1999) Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 22(1):82–84

    Article  CAS  PubMed  Google Scholar 

  • Koshizaka M, Maezawa Y, Maeda Y, Shoji M, Kato H, Kaneko H et al (2020) Time gap between the onset and diagnosis in Werner syndrome: a nationwide survey and the 2020 registry in Japan. Aging (Albany NY) 12(24):24940–24956

    Article  Google Scholar 

  • Kubota Y, Takemoto M, Taniguchi T, Motegi SI, Taniguchi A, Nakagami H et al (2021) Management guideline for Werner syndrome 2020. 6. Skin ulcers associated with Werner syndrome: prevention and non-surgical and surgical treatment. Geriatr Gerontol Int 21(2):153–159

    Article  PubMed  Google Scholar 

  • Kusumoto R, Dawut L, Marchetti C, Wan Lee J, Vindigni A, Ramsden D et al (2008) Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 47(28):7548–7556

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto-Matsuo R, Ghosh D, Karmakar P, May A, Ramsden D, Bohr VA (2014) Serines 440 and 467 in the Werner syndrome protein are phosphorylated by DNA-PK and affects its dynamics in response to DNA double strand breaks. Aging (Albany NY) 6(1):70–81

    Article  CAS  Google Scholar 

  • Kuzuya M, Takemoto M, Kubota Y, Taniguchi T, Motegi SI, Taniguchi A et al (2021) Management guideline for Werner syndrome 2020. 2. Sarcopenia associated with Werner syndrome. Geriatr Gerontol Int 21(2):139–141

    Article  PubMed  Google Scholar 

  • Lachapelle S, Gagne JP, Garand C, Desbiens M, Coulombe Y, Bohr VA et al (2011) Proteome-wide identification of WRN-interacting proteins in untreated and nuclease-treated samples. J Proteome Res 10(3):1216–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laud PR, Multani AS, Bailey SM, Wu L, Ma J, Kingsley C et al (2005) Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev 19(21):2560–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr (2013) Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One 8(4):e59709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebel M, Leder P (1998) A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci U S A 95(22):13097–13102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuschner UF, Lindenthal B, Herrmann G, Arnold JC, Rossle M, Cordes HJ et al (2010) High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology 52(2):472–479

    Article  CAS  PubMed  Google Scholar 

  • Li K, Casta A, Wang R, Lozada E, Fan W, Kane S et al (2008) Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem 283(12):7590–7598

    Article  CAS  PubMed  Google Scholar 

  • Li B, Iglesias-Pedraz JM, Chen LY, Yin F, Cadenas E, Reddy S et al (2014) Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell 13(2):367–378

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang W, Chang L, Han Y, Sun L, Gong X et al (2016) Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell 7(7):478–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J, Bronson R et al (2000) Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol 20(9):3286–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Davis AJ (2021) Human RecQ Helicases in DNA double-strand break repair. Front Cell Dev Biol 9:640755

    Article  PubMed  PubMed Central  Google Scholar 

  • Machwe A, Xiao L, Orren DK (2004) TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23(1):149–156

    Article  CAS  PubMed  Google Scholar 

  • Maierhofer A, Flunkert J, Oshima J, Martin GM, Haaf T, Horvath S (2017) Accelerated epigenetic aging in Werner syndrome. Aging (Albany NY) 9(4):1143–1152

    Article  CAS  Google Scholar 

  • Maierhofer A, Flunkert J, Oshima J, Martin GM, Poot M, Nanda I et al (2019) Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes. Aging Cell 18(5):e12995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Arnau FM, Fonfria-Vivas R, Cauli O (2019) Beneficial effects of leucine supplementation on criteria for sarcopenia: a systematic review. Nutrients 11(10):2504

    Article  CAS  PubMed Central  Google Scholar 

  • Massip L, Garand C, Paquet ER, Cogger VC, O’Reilly JN, Tworek L et al (2010) Vitamin C restores healthy aging in a mouse model for Werner syndrome. FASEB J 24(1):158–172

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Imamura O, Yamabe Y, Kuromitsu J, Tokutake Y, Shimamoto A et al (1997a) Mutation and haplotype analyses of the Werner’s syndrome gene based on its genomic structure: genetic epidemiology in the Japanese population. Hum Genet 100(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Shimamoto A, Goto M, Furuichi Y (1997b) Impaired nuclear localization of defective DNA helicases in Werner’s syndrome. Nat Genet 16(4):335–336

    Article  CAS  PubMed  Google Scholar 

  • Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M et al (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452(7186):492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori S, Zhou H, Yamaga M, Takemoto M, Yokote K (2017) Femoral osteoporosis is more common than lumbar osteoporosis in patients with Werner syndrome. Geriatr Gerontol Int 17(5):854–856

    Article  PubMed  Google Scholar 

  • Mori S, Takemoto M, Kubota Y, Taniguchi T, Motegi SI, Taniguchi A et al (2021) Management guideline for Werner syndrome 2020. 4. Osteoporosis associated with Werner syndrome. Geriatr Gerontol Int 21(2):146–149

    Article  PubMed  Google Scholar 

  • Motegi SI, Takemoto M, Taniguchi T, Kubota Y, Taniguchi A, Nakagami H et al (2021) Management guideline for Werner syndrome 2020. 7. Skin ulcer associated with Werner syndrome: dermatological treatment. Geriatr Gerontol Int 21(2):160–162

    Article  PubMed  Google Scholar 

  • Muftuoglu M, Oshima J, von Kobbe C, Cheng WH, Leistritz DF, Bohr VA (2008) The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet 124(4):369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata K, Nakashima H (1982) Werner’s syndrome: twenty-four cases with a review of the Japanese medical literature. J Am Geriatr Soc 30(5):303–308

    Article  CAS  PubMed  Google Scholar 

  • Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C et al (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25(4):350–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nora GJ, Buncher NA, Opresko PL (2010) Telomeric protein TRF2 protects Holliday junctions with telomeric arms from displacement by the Werner syndrome helicase. Nucleic Acids Res 38(12):3984–3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novelli G, Muchir A, Sangiuolo F, Helbling-Leclerc A, D’Apice MR, Massart C et al (2002) Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet 71(2):426–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata N, Shiraki M, Hosoi T, Koshizuka Y, Nakamura K, Kawaguchi H (2001) A polymorphic variant at the Werner helicase (WRN) gene is associated with bone density, but not spondylosis, in postmenopausal women. J Bone Miner Metab 19(5):296–301

    Article  CAS  PubMed  Google Scholar 

  • Okabe E, Takemoto M, Onishi S, Ishikawa T, Ishibashi R, He P et al (2012) Incidence and characteristics of metabolic disorders and vascular complications in individuals with Werner syndrome in Japan. J Am Geriatr Soc 60(5):997–998

    Article  PubMed  Google Scholar 

  • Onishi S, Takemoto M, Ishikawa T, Okabe E, Ishibashi R, He P et al (2012) Japanese diabetic patients with Werner syndrome exhibit high incidence of cancer. Acta Diabetol 49(Suppl 1):S259–S260

    Article  PubMed  Google Scholar 

  • Opresko PL (2008) Telomere ResQue and preservation--roles for the Werner syndrome protein and other RecQ helicases. Mech Ageing Dev 129(1–2):79–90

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S et al (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14(6):763–774

    Article  CAS  PubMed  Google Scholar 

  • Oshima J, Yu CE, Piussan C, Klein G, Jabkowski J, Balci S et al (1996) Homozygous and compound heterozygous mutations at the Werner syndrome locus. Hum Mol Genet 5(12):1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Oshima J, Sidorova JM, Monnat RJ Jr (2017) Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105–114

    Article  CAS  PubMed  Google Scholar 

  • Otterlei M, Bruheim P, Ahn B, Bussen W, Karmakar P, Baynton K et al (2006) Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. J Cell Sci 119(Pt 24):5137–5146

    Article  CAS  PubMed  Google Scholar 

  • Palermo V, Rinalducci S, Sanchez M, Grillini F, Sommers JA, Brosh RM Jr et al (2016) CDK1 phosphorylates WRN at collapsed replication forks. Nat Commun 7:12880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picco G, Cattaneo CM, van Vliet EJ, Crisafulli G, Rospo G, Consonni S et al (2021) Werner helicase is a synthetic-lethal vulnerability in mismatch repair-deficient colorectal cancer refractory to targeted therapies, chemotherapy and immunotherapy. Cancer Discov 11(8):1923–1937

    Article  CAS  PubMed  Google Scholar 

  • Rubin CD, Zerwekh JE, Reed-Gitomer BY, Pak CY (1992) Characterization of osteoporosis in a patient with Werner’s syndrome. J Am Geriatr Soc 40(11):1161–1163

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Cypro A, Martin GM, Oshima J (2014) Rapamycin decreases DNA damage accumulation and enhances cell growth of WRN-deficient human fibroblasts. Aging Cell 13(3):573–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362(18):1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh M, Imai M, Sugimoto M, Goto M, Furuichi Y (1999) Prevalence of Werner’s syndrome heterozygotes in Japan. Lancet 353(9166):1766

    Article  CAS  PubMed  Google Scholar 

  • Shamanna RA, Lu H, de Freitas JK, Tian J, Croteau DL, Bohr VA (2016) WRN regulates pathway choice between classical and alternative non-homologous end joining. Nat Commun 7:13785

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M et al (2014) Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS One 9(11):e112900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimamoto A, Yokote K, Tahara H (2015) Werner Syndrome-specific induced pluripotent stem cells: recovery of telomere function by reprogramming. Front Genet 6:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimizu T, Tateishi Y, Furuichi Y, Sugimoto M, Kawabe T, Matsumoto T et al (2002) Diagnosis of Werner syndrome by immunoblot analysis. Clin Exp Dermatol 27(2):157–159

    Article  CAS  PubMed  Google Scholar 

  • Sturzenegger A, Burdova K, Kanagaraj R, Levikova M, Pinto C, Cejka P et al (2014) DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells. J Biol Chem 289(39):27314–27326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Shiratori M, Furuichi Y, Matsumoto T (2001) Diverged nuclear localization of Werner helicase in human and mouse cells. Oncogene 20(20):2551–2558

    Article  CAS  PubMed  Google Scholar 

  • Takada-Watanabe A, Yokote K, Takemoto M, Fujimoto M, Irisuna H, Honjo S et al (2012) A case of Werner syndrome without metabolic abnormality: implications for the early pathophysiology. Geriatr Gerontol Int 12(1):140–146

    Article  PubMed  Google Scholar 

  • Takemoto M, Yokote K (2012) The guideline of Werner syndrome for diagnosis and clinical practice

    Google Scholar 

  • Takemoto M, Yokote K (2021) Preface to management guideline for Werner syndrome 2020. Geriatr Gerontol Int 21(2):131–132

    Article  PubMed  Google Scholar 

  • Takemoto M, Mori S, Kuzuya M, Yoshimoto S, Shimamoto A, Igarashi M et al (2013) Diagnostic criteria for Werner syndrome based on Japanese nationwide epidemiological survey. Geriatr Gerontol Int 13(2):475–481

    Article  PubMed  Google Scholar 

  • Takemoto M, Yamaga M, Furuichi Y, Yokote K (2015) Astaxanthin improves nonalcoholic fatty liver disease in Werner syndrome with diabetes mellitus. J Am Geriatr Soc 63(6):1271–1273

    Article  PubMed  Google Scholar 

  • Takemoto M, Kubota Y, Taniguchi T, Motegi SI, Taniguchi A, Nakagami H et al (2021) Management guideline for Werner syndrome 2020. 3. Diabetes associated with Werner syndrome. Geriatr Gerontol Int 21(2):142–145

    Article  PubMed  Google Scholar 

  • Takino H, Okuno S, Uotani S, Yano M, Matsumoto K, Kawasaki E et al (1994) Increased insulin responsiveness after CS-045 treatment in diabetes associated with Werner’s syndrome. Diabetes Res Clin Pract 24(3):167–172

    Article  CAS  PubMed  Google Scholar 

  • Talaei F, van Praag VM, Henning RH (2013) Hydrogen sulfide restores a normal morphological phenotype in Werner syndrome fibroblasts, attenuates oxidative damage and modulates mTOR pathway. Pharmacol Res 74:34–44

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Takemoto M, Kubota Y, Motegi SI, Taniguchi A, Nakagami H et al (2021a) Management guideline for Werner syndrome 2020. 5. Infection associated with Werner syndrome. Geriatr Gerontol Int 21(2):150–152

    Article  PubMed  Google Scholar 

  • Taniguchi A, Tanaka Y, Takemoto M, Kubota Y, Taniguchi T, Motegi SI et al (2021b) Management guideline for Werner syndrome 2020. 8. Calcification in tendons associated with Werner syndrome. Geriatr Gerontol Int 21(2):163–165

    Article  PubMed  Google Scholar 

  • Tokita M, Kennedy SR, Risques RA, Chun SG, Pritchard C, Oshima J et al (2016) Werner syndrome through the lens of tissue and tumour genomics. Sci Rep 6:32038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto K, Takemoto M, Kubota Y, Taniguchi T, Motegi SI, Taniguchi A et al (2021) Management guideline for Werner syndrome 2020. 1. Dyslipidemia and fatty liver associated with Werner syndrome. Geriatr Gerontol Int 21(2):133–138

    Article  PubMed  Google Scholar 

  • Tu J, Wan C, Zhang F, Cao L, Law PWN, Tian Y et al (2020) Genetic correction of Werner syndrome gene reveals impaired pro-angiogenic function and HGF insufficiency in mesenchymal stem cells. Aging Cell 19(5):e13116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zheng Y, Sun S, Li W, Song M, Ji Q et al (2021) A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med 13(575):eabd2655

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Kobayashi K, Takemoto M, Ishibashi R, Yamaga M, Kawamura H et al (2013) Sitagliptin improves postprandial hyperglycemia by inhibiting glucagon secretion in Werner syndrome with diabetes. Diabetes Care 36(8):e119

    Article  PubMed  PubMed Central  Google Scholar 

  • van Wietmarschen N, Sridharan S, Nathan WJ, Tubbs A, Chan EM, Callen E et al (2020) Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 586(7828):292–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Z, Zhang W, Song M, Wang W, Wei G, Li W et al (2018) Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9(4):333–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyllie FS, Jones CJ, Skinner JW, Haughton MF, Wallis C, Wynford-Thomas D et al (2000) Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet 24(1):16–17

    Article  CAS  PubMed  Google Scholar 

  • Yamaga M, Takemoto M, Takada-Watanabe A, Koizumi N, Kitamoto T, Sakamoto K et al (2017) Recent trends in WRN gene mutation patterns in individuals with Werner syndrome. J Am Geriatr Soc 65(8):1853–1856

    Article  PubMed  Google Scholar 

  • Yamamoto H, Kurebayashi S, Kouhara H, Yoshiuchi K, Matsuhisa M, Yamasaki Y et al (2007) Impacts of long-term treatments with testosterone replacement and pioglitazone on glucose and lipid metabolism in male patients with Werner’s syndrome. Clin Chim Acta 379(1–2):167–170

    Article  CAS  PubMed  Google Scholar 

  • Yasuda H, Nagata M, Hara K, Moriyama H, Yokono K (2010) Biguanide, but not thiazolidinedione, improved insulin resistance in Werner syndrome. J Am Geriatr Soc 58(1):181–182

    Article  PubMed  Google Scholar 

  • Yeong EK, Yang CC (2004) Chronic leg ulcers in Werner’s syndrome. Br J Plast Surg 57(1):86–88

    Article  CAS  PubMed  Google Scholar 

  • Yokote K, Saito Y (2008) Extension of the life span in patients with Werner syndrome. J Am Geriatr Soc 56(9):1770–1771

    Article  PubMed  Google Scholar 

  • Yokote K, Honjo S, Kobayashi K, Fujimoto M, Kawamura H, Mori S et al (2004a) Metabolic improvement and abdominal fat redistribution in Werner syndrome by pioglitazone. J Am Geriatr Soc 52(9):1582–1583

    Article  PubMed  Google Scholar 

  • Yokote K, Hara K, Mori S, Kadowaki T, Saito Y, Goto M (2004b) Dysadipocytokinemia in Werner syndrome and its recovery by treatment with pioglitazone. Diabetes Care 27(10):2562–2563

    Article  PubMed  Google Scholar 

  • Yokote K, Chanprasert S, Lee L, Eirich K, Takemoto M, Watanabe A et al (2017) WRN mutation update: mutation spectrum, patient registries, and translational prospects. Hum Mutat 38(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272(5259):258–262

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J et al (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348(6239):1160–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Qu J, Liu GH, Belmonte JCI (2020) The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 21(3):137–150

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Mori S, Tanaka M, Sawabe M, Arai T, Muramatsu M et al (2015) A missense single nucleotide polymorphism, V114I of the Werner syndrome gene, is associated with risk of osteoporosis and femoral fracture in the Japanese population. J Bone Miner Metab 33(6):694–700

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koutaro Yokote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maezawa, Y., Koshizaka, M., Kato, H., Yokote, K. (2022). Clinical and Basic Biology of Werner Syndrome, the Model Disease of Human Aging. In: Mori, N. (eds) Aging Mechanisms II . Springer, Singapore. https://doi.org/10.1007/978-981-16-7977-3_2

Download citation

Publish with us

Policies and ethics