Skip to main content

Secondary Metabolites of Microbials as Potential Pesticides

  • Chapter
  • First Online:
Sustainable Management of Potato Pests and Diseases

Abstract

Crop protection has become an integral part of production system with substantial price tag. Overreliance on chemical pesticides masked the effects of natural pest controlling factors like microbial pathogens. The importance and safety associated with these efficient pest suppression options led to their increased use in recent past. However, being living organisms their formulations, shelf life, persistence and potential in different agroecological regions, etc. are a bottleneck. At this juncture, deep insights into the modes of action lead to the discovery of metabolites that are actually and actively involved in the pathogenicity and killing of the host species. Further advances in organic and synthetic chemistry escorted the commercial facets of these pesticidal secondary metabolites. Recent past has seen the discovery of a variety of novel microbial origin pesticidal compounds and has become an evergrowing science in view of the existing diversity of microbial pathogens and strains. Some of them also saw the status of commercial pesticides with huge success. The target specificity, structural distinctiveness, novel modes of action, and environmental safety are the chief contributing factors for their success as potential pest suppression options. In this context, this chapter discusses the pesticidal (insecticidal, antifungal, antibacterial, and nematicidal) activities (target pests, modes of action, chemical structures, etc.) of different metabolites produced by diverse pathogenic microorganisms of agricultural importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aballay E, Prodan S, Zamorano A, Castaneda-Alvarez C (2017) Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol 33(7):131

    CAS  PubMed  Google Scholar 

  • Abbas HK, Tanaka T, Duke SO, Boyette CD (1995) Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide. Weed Technol 9:125–130

    CAS  Google Scholar 

  • Abbasi M, Ahmed N, Zaki M, Shuakat S, Khan D (2014) Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant and Soil 375(1/2):159–173

    CAS  Google Scholar 

  • Aghajanzadeh S, Mallik B, Chandrashekar SC (2006) Toxicity of culture filtrate of hirsutella thompsoniifisher against citrus rust mite, Phyllocoptruta oleivora Ashmead (Acari: Eriophyidae) and two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Int J Agric Biol 8:276–279

    Google Scholar 

  • Altomare C, Pengue R, Favilla M, Evidente A, Visconti A (2004) Structure-activity relationships of derivatives of fusapyrone, an antifungal metabolite of fusarium semitectum. J Agric Food Chem 52:2997–3001

    CAS  PubMed  Google Scholar 

  • Altomare C, Perrone G, Zonno MC, Evidente A, Pengue R, Fanti F, Polonelli L (2000) Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of fusarium semitectum. J Nat Prod 63:1131–1135

    CAS  PubMed  Google Scholar 

  • Andolfi A, Maddau L, Linaldeddu BT, Scanu B, Cimmino A, Basso S, Evidente A (2014) Bioactivity studies of oxysporone and several derivatives. Phytochem Lett 10:40–45

    CAS  Google Scholar 

  • Arakawa T, Yukuhiro F, Noda H (2008) Insecticidal effect of a fungicide containing polyoxin B on the larvae of Bombyx mori (Lepidoptera: Bombycidae), Mamestra brassicae, Mythimna separata, and Spodoptera litura (Lepidoptera: Noctuidae). Appl Entomol Zool 43(2):173–181

    CAS  Google Scholar 

  • Araújo JP, Hughes DP (2016) Chapterone-diversity of entomopathogenic fungi: which groups conquered the insect body? Adv Genet 94:1–39

    PubMed  Google Scholar 

  • Arthurs S, Dara SK (2019) Microbial biopesticides for invertebrate pests and their markets in the United States. J Invertebr Pathol 165:13–21

    PubMed  Google Scholar 

  • Avupati RS, Khan MS, Johnson S, Yogi MK (2017) Diversity and functional annotation of chitinolytic bacillus and associated chitinases from north western Indian Himalayas. Appl Soil Ecol 119:46–55

    Google Scholar 

  • Bailly A, Weisskopf L (2017) Mining the volatilomes of plant-associated microbiota for new biocontrol solutions. Front Microbiol 8:1638–1638

    PubMed  PubMed Central  Google Scholar 

  • Bandani AR (2004) Effect of entomopathogenic fungus Tolypocladium species metaboliteefrapeptinon Galleriamellonella agglutinin. Commun Agric Appl Biol Sci 69:165–169

    CAS  PubMed  Google Scholar 

  • Bandani AR (2008) The effects of entomopathogenic fungus, Tolypocladium cylindrosporum on cellular defence system of galleria mellonella. J Agric Sci Technol 10:135–146

    Google Scholar 

  • Barrios-González J, Castillo TE, Mejía A (1988) Penicillin production by solid state fermentation. Biotechnoi Leu 10:793–798

    Google Scholar 

  • Barrios-Gonzalez J, Mejia A (1996) Production of secondary metabolites by solid-state fermentation. Biotechnol Annu Rev 2:85–121

    CAS  PubMed  Google Scholar 

  • Beebee T, Korner A, Bond RP (1972) Differential inhibition of mammalian ribonucleic acid polymerases by an exotoxin from Bacillus thuringiensis. The direct observation of nucleoplasmic ribonucleic acid polymerase activity in intact nuclei. Biochem J 127:619–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JW, Bentley R (1989) What's in a name? Microbial secondary metabolism. Adv Appl Microbiol 34:1–28

    CAS  Google Scholar 

  • Berg G (2000) Diversity of antifungal and plant-associated Serratia plymuthica strains. J Antimicrob Chemother 88:952–960

    CAS  Google Scholar 

  • Berg G (2009) Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  PubMed  Google Scholar 

  • Binnington KC, Baule VJ (1993) Naturally occurring insecticidal molecules as candidates for genetic engineering. In: Molecular approaches to fundamental and applied entomology. Springer, New York, pp 38–89

    Google Scholar 

  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brodhagen M, Paulsen I, Loper JE (2005) Reciprocal regulation of pyoluteorin production with membrane transporter gene expression in Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71:6900–6909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bull C, Wadsworth M, Sorensen K, Takemoto J, Austin R, Smilanick J (1998) Syringomycin E produced by the biological control agents control green mold on lemons. Biol Control 12:89–95

    Google Scholar 

  • Burgerjon A, Biache G, Cals P (1969) Teratology of the Colorado potato beetle, Leptinotarsa decemlineata, as provoked by larval administration of the thermostable toxin of Bacillus thuringiensis. J Invertebr Pathol 14:274–278

    Google Scholar 

  • Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol 69:2415–2422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buttachon S, Chandrapatya A, Himaman W, Kijjoa A (2013) Acaricidal activityof Hypocrella raciborskii Zimm. (Hypocreales: Clavicipitaceae) crude extract and some pure compounds on Tetranychusurticae Koch (Acari: Tetranychidae). Afr J Microbiol Res 7:557–585

    Google Scholar 

  • Cai X, Nowak S, Wesche F, Bischoff I, Kaiser M, Furst R, Bode HB (2016) Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nat Chem 9:379–386

    PubMed  Google Scholar 

  • Campbell WC (1989) Ivermectin and abamectin. Springer, New York, p 361

    Google Scholar 

  • Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80(2):329–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Chatterjee DK, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin, a new antibiotic from bacillus: fermentation, isolation, purification and chemical characterization. J Antibiot 45:832–838

    CAS  Google Scholar 

  • Che Y, Swenson DC, Gloer JB, Koster B, Malloch D (2001) Pseudodestruxins a and B: new cyclic depsipeptides from the coprophilous fungus Nigrosabulum globosum. J Nat Prod 64:555–558

    CAS  PubMed  Google Scholar 

  • Chen XH, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borriss R (2009) Difficidin and bacilysin produced by plant-associated bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140:38–44

    CAS  PubMed  Google Scholar 

  • Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, Park SH (2009) Identification of a polymyxinsynthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191:3350–3358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cimmino A, Andolfi A, Avolio F, Ali A, Tabanca N, Khan IA, Evidente A (2013) Cyclopaldic acid, seiridin, and sphaeropsidin a as fungal phytotoxins, and larvicidal and biting deterrents against Aedes aegypti (Diptera: Culicidae): structure-activity relationships. Chem Biodivers 10:1239–1251

    CAS  PubMed  Google Scholar 

  • Crawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J (2012) Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci U S A 109:10821–10826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2011) Bacillus thuringiensis. Toxin nomenclature. www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/data

  • Daborn PJ, Waterfield N, Silva CP, Au CP, Sharma S, Ffrench-Constant RH (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci U S A 99(16):10742–10747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. History of modern biotechnology I:1–39

    Google Scholar 

  • Demirci H, Murphy F, Murphy E, Gregory ST, Dahlberg AE, Jog G (2013) A structural basis for streptomycin-induced misreading of the genetic code. Nat Commun 4:1355

    PubMed  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411(6839):813–817

    CAS  PubMed  Google Scholar 

  • Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21(11):1307

    CAS  PubMed  Google Scholar 

  • Duke SO, Dayan FE, Rimando AM, Schrader KK, Aliotta G, Oliva A, Romagni JG (2002) Chemicals from nature for weed management. Weed Sci 50:138–151

    CAS  Google Scholar 

  • Dumas C, Matha V, Quiot JM, Vey A (1996) Effects of destruxins, cyclic depsipeptide mycotoxins, on calcium balance and phosphorylation of intracellular proteins in lepidopteran cell lines. Comp Biochem Physiol 114C:213–219

    CAS  Google Scholar 

  • Dunham B (2015) Microbial biopesticides: a key role in the multinational portfolio. http://dunhamtrimmer.com/wp-content/uploads/2015/01/Products-and-Trends.pdf. Accessed 22 Aug 2017

  • El-Hadad ME, Mustafa MI, Selim SM, Mahgoob AEA, El-Tayeb TS, Abdel Aziz NH (2010) In vitro evaluation of some bacterial isolates as biofertilizers and biocontrol agents against the second stage juveniles of Meloidogyne incognita. World J Microbiol Biotechnol 26:2249–2256

    Google Scholar 

  • El-Sayed AK, Hothersall J, Thomas CM (2001) Quorum-sensingdependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147:2127–2139

    CAS  PubMed  Google Scholar 

  • Elsworth JF, Grove JF (1977) Cyclodepsipeptides from Beauveria bassiana Bals. Part1. Beauverolides HandI. J Chem Soc Perkin Trans 1:207–273

    Google Scholar 

  • Espinasse S, Gohar M, Chaufaux J, Buisson C, Perchat S, Sanchis V (2002) Correspondence of high levels of beta-exotoxin I and the presence of cry1B in Bacillus thuringiensis. Appl Environ Microbiol 68:4182–4186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evidente A, Maddau L, Scanu B, Andolfi A, Masi M, Motta A, Tuzi A (2011) Sphaeropsidones, phytotoxic dimedone methyl ethers produced by Diplodia cupressi: a structure—activity relationship study. J Nat Prod 74:757–763

    CAS  PubMed  Google Scholar 

  • Farkas J, Sebesta K, Horska K, Samek Z, Dollijs J, Storm F (1969) The structure of exotoxin of bacillus thuringiensis var. gelechiae. Collect Czechslov Chem Commun 34:1118–1120

    CAS  Google Scholar 

  • Frankenhuyzen K (2009) Insecticidal activity of bacillus thuringiensis crystal proteins. J Invertebr Pathol 101(1):1–16

    PubMed  Google Scholar 

  • Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X (2016) Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep 6:28756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons SM, Gilbert JA (2015) Microbial diversity—exploration of natural ecosystems and microbiomes. Curr Opin Genet Dev 35:66–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glare TR, Milner RJ (1991) Ecology of entomopathogenic fungi. In: Arora DK, Mukeriji KG, Pugh JEF (eds) Handbook of applied mycology. Dekker, NewYork, pp 547–612

    Google Scholar 

  • Goettel MS, Hajek AE, Siegel JP, Evans HC (2001) Safety of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents, progress, problems, and potential. CAB International, Wallingford, pp 347–375

    Google Scholar 

  • Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z (2014) Identification of bacillomycin D from Bacillus subtilis and its inhibition effects against Aspergillusflavus. Food Control 36:8–14

    CAS  Google Scholar 

  • Guttenberger N, Blankenfeldt W, Breinbauer R (2017) Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 25:6149–6166

    CAS  PubMed  Google Scholar 

  • Hallmann J, Sikora RA (1994) Occurrence of plant parasitic nematodes and non-pathogenic species of fusarium in tomato plants in Kenya and their role as mutualistic synergists for biological control of root-knot nematodes. Int J Pest Manag 40:321–325

    Google Scholar 

  • Hallmon CF, Schreiber ET, Vo T, Bloomquist A (2000) Field trials of three concentrations of Laginex as biological larvicide compared to Vectobac- 12AS AS a biocontrol agent for Culex quinquefasciatus. J Amer Mosq Control Assoc 16:5–8

    CAS  Google Scholar 

  • Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG, Yoo ID, Yang YY, Suh JW (2005) Biological control of common scab diseases by antagonistic strain Bacillus sp. sunhua. J Appl Microbiol 99:213–221

    CAS  PubMed  Google Scholar 

  • Hellberg J, Matilla MA, Salmond GPC (2015) The broad-spectrum antibiotic, zeamine, kills the nematode worm Caenorhabditiselegans. Front Microbiol 6:137

    PubMed  PubMed Central  Google Scholar 

  • Hesseltine CW (1977a) Solid-state fermentation part 1. Process Biochem 12:24–27

    CAS  Google Scholar 

  • Hesseltine CW (1977b) Solid-state fermentation part 2. Process Biochem 12:29–32

    CAS  Google Scholar 

  • Hinchliffe SJ, Hares MC, Dowling AJ (2010) Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria. Open Toxicol J 3(1):101–118

    Google Scholar 

  • Horn SJ, Sørbotten A, Synstad B et al (2006) Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J 273:491–503

    CAS  PubMed  Google Scholar 

  • Hu QB, Ren SX, Wu JH, Chang JM, Musa PD (2006) Investigation of destruxin A and B from 80 Metarhizium strains in China, and the optimization of cultural conditions for the strain MaQ10. Toxicon 48:491–498

    CAS  PubMed  Google Scholar 

  • Huang X, Tian B, Niu Q, Yang J, Zhang L, Zhang K (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727

    CAS  PubMed  Google Scholar 

  • Ingels A, Dinhof C, Garg AD, Maddau L, Masi M, Evidente A, Berger W, Dejaegher B, Mathieu V (2017) Computed determination of the in vitro optimal chemocombinations of sphaeropsidin A with chemotherapeutic agents to combat melanomas. Cancer Chemother Pharmacol 79:971–983

    CAS  PubMed  Google Scholar 

  • Isaka M, Kittakoop P, Thebtaranonth Y (2003) Secondary metabolites of Clavicipitalean fungi. In: White JF, Bacon CW, Hywel-Jones NL, Spata JW (eds) Clavicipitalean fungi: evolutionary biology, chemistry, biocontrol, and culture impacts (mycology series). CRC Press, Boca Raton, pp 355–398

    Google Scholar 

  • Isaka M, Palasarn S, Tobwor P, Boonruangprapa T, Tasanathai K (2012) Bioactive anthrax quinine dimmers from the leafhopper pathogenic fungus Torrubiella sp. BCC28517. J Antibiot 65:571–574. https://doi.org/10.1038/ja.2012.76

    Article  CAS  Google Scholar 

  • James PJ, Kershaw MJ, Reynolds SE, Charnley AK (1993) Inhibition of desert locust (Schistocerca gregaria) Malpighian tubule fluid secretion by destruxins, cyclic peptide toxins from the insect pathogenic fungus Metarhizium anisopliae. J Insect Physiol 39:797–804

    CAS  Google Scholar 

  • Jin-Ming G (2006) New biologically active metabolites from Chinese higher fungi. Curr Org Chem 10:849–871. https://doi.org/10.2174/138527206776894393

    Article  Google Scholar 

  • Juliet DT, Tina C, Maria TP, Susan VD (2017) Activity of two Strobilurin fungicides against three species of decay fungi in agar plate tests. In Proc IRG annual meeting: IRG/WP 17-30704

    Google Scholar 

  • Jung WJ, Kim KY, Park YS et al (2014) Purification and properties of a Meloidogyne antagonistic chitinase from Lysobacter capsici YS1215. Nematolog 16:63–72

    Google Scholar 

  • Jung WJ, Mabood F, Souleimanov A, Smith DL (2011) Induction of defense-related enzymes in soybean leaves by class IIdbacteriocins (thuricin 17 and bacthuricin F4) purified from Bacillus strains. Microbiol Res 167(1):14–19

    PubMed  Google Scholar 

  • Kato N, Furutani S, Otaka J, Noguchi A, Kinugasa K, Kai K, Hayashi H, Ihara M, Takahashi S, Matsuda K (2018) Biosynthesis and structure–activity relationship studies of okaramines that target insect glutamate-gated chloride channels. ACS Chem Biol 13:561–566

    CAS  PubMed  Google Scholar 

  • Kerwin JL, Dritz DA, Washino RK (1994) Pilot scale production and application in wildlife ponds of Lagenidium giganteum (oomycetes: Lagenidiales). J Amer Mosq Control Assoc 10:451–455

    CAS  Google Scholar 

  • Kim BS, Hwang BK (2007) Microbial fungicides in the control of plant diseases. J Phytopathol 155:641–653

    CAS  Google Scholar 

  • Kim JR, Yeon SH, Kim HS, Ahn YJ (2002) Larvicidal activity against Plutella xylostella of cordycepin from the fruiting body of Cordycepsmilitaris. Pest Manag Sci 58:713–717

    CAS  PubMed  Google Scholar 

  • Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of bacillus thuringiensis δ-endotoxins with different insect specificity. Biochem BiophysActa 924(3):509–518

    CAS  Google Scholar 

  • Koni PA, Ellar DJ (1994) Biochemical characterization of Bacillus thuringiensis cytolytic δ-endotoxins. Microbiology 140:1869–1880

    CAS  PubMed  Google Scholar 

  • Kornis GI (1995) Avermectins and milbemycins. In: Godfrey CRA (ed) Agrochemicals from natural products. Marcel Dekker, New York, pp 215–255

    Google Scholar 

  • Krasnoff SB, Gibson DM (1996) New destruxins from the entomopathogenic fungus Aschersoniasp. J Nat Prod 59:485–489

    CAS  Google Scholar 

  • Kryukov VIU, Yaroslavtseva ON, Dubovskiy IM, Tyurin MV, Kryukova NA, Glupov VV (2014) Insecticidal and immunosuppressive effect of ascomycete Cordycepsmilitaris on the larvae of the Colorado potato beetle Leptinotarsa decemlineata. Biol Bull 41:3

    Google Scholar 

  • Lallemand B, Masi M, Maddau L, De Lorenzi M, Dam R, Cimmino A, Moreno Y, Banuls L, Andolfi A, Kiss R (2012) Evaluation of in vitro anticancer activity of sphaeropsidins A–C, fungal rearranged pimarane diterpenes, and semisynthetic derivatives. Phytochem Lett 5:770–775

    CAS  Google Scholar 

  • Lastra CL, Scorsetti AC, Marti GA, García JJ (2004) Host range and specificity of an argentine an isolate of the aquatic fungus Leptolegnia chapmanii (oomycetes: Saprolegniales), a pathogen of mosquito larvae (Diptera: Culicidae). Mycopathologia 158:311–315

    Google Scholar 

  • Lee YS, Nguyen XH, Naing KW et al (2014) Role of lytic enzymes secreted by Lysobacter capsici YS1215 in the control of root-knot nematode of tomato plants. Indian J Microbiol 55:74–80

    Google Scholar 

  • Levenfors JJ, Hedman R, Thaning C, Gerhardson B, Welch CJ (2004) Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil BiolBiochem 36:677–685

    CAS  Google Scholar 

  • Li J, Pandelakis AK, Ellar DJ (1996) Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp kyushuensis and implications for membrane pore formation. J Mol Biol 257:129–152

    CAS  PubMed  Google Scholar 

  • Li XJ, Zhang Q, Zhang AL, Gao JM (2012) Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J Agric Food Chem 60:3424–3431

    CAS  PubMed  Google Scholar 

  • Liang WL, Le X, Li HJ, Yang XL, Chen JX, Xu J, Liu HL, Wang LY, Wang KT, Hu KC (2014) Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri. Mar Drugs 12:5657–5676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Ruan L, Peng D, Li L, Sun M, Yu Z (2014) Thuringiensin: a thermostable secondary metabolite from bacillus thuringiensis with insecticidal activity against a wide range of insects. Toxins 6(8):2229–2238

    PubMed  PubMed Central  Google Scholar 

  • Liu XY, Ruan LF, Hu ZF, Peng DH, Cao SY, Yu ZN, Liu Y, Zheng JS, Sun M (2010) Genome-wide screening reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis. J Biol Chem 285(50):39191–39200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R et al (2013) The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol 97:10081–10090

    CAS  PubMed  Google Scholar 

  • Lydon J, Duke SO (1999) Inhibitors of glutamine biosynthesis. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 445–464

    Google Scholar 

  • Macias FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Eden MA, Hill RA (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63:1197–2000

    CAS  PubMed  Google Scholar 

  • Marin M, Mena J, Franco R, Pimentel E, Sánchez I (2010) Effects of the bacterial-fungal interaction between Tsukamurella paurometabola C 924 and Glomus fasciculatum and Glomus clarum fungi on lettuce mycorrhizal colonization and foliar weight. Biotecnol Apl 27(1):48–51

    Google Scholar 

  • Markets, Markets (2016) Biopesticides market – global forecast to 2022. By type (bioinsecticides, biofungicides, bioherbicides, and bionematicides), origin (beneficial insects, microbials, plant-incorporated protectants, and biochemicals), mode of application, formulation, crop type and region. http://www.marketsandmarkets.com/. Accessed 24 Nov 2018

  • Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155:1693–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall SD, Hares MC, Jones SA, Harper LA, James VR, Harland DP, Jackson TA, Hurst MR (2012) Histopathological effects of the yen-Tc toxin complex from Yersina entomophaga MH96 (Enterobacteriaceae) on the midgut of Costelytra zealandica (Coleoptera: Scarabaeidae) larvae. Appl Environ Microbiol 78:4835–4847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masschelein J, Mattheus W, Gao LJ, Moons P, Van Houdt R, Uytterhoeven B, Lamberigts C, Lescrinier E, Rozenski J, Herdewijn P, Aertsen A, Michiels C, Lavigne R (2013) A PKS/ NRPS/FAS hybrid gene cluster from Serratiaplymuthica RVH1 encoding the biosynthesis of three broad spectrum, zeaminerelated antibiotics. PLoS One 8(1):e54143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu V, Chantôme A, Lefranc F, Cimmino A, Miklos W, Paulitschke V, Mohr T, Maddau L, Kornienko A, Berger W (2015) Sphaeropsidin a shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cell Mol Life Sci 72:3731–3746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrodi OV, McSpadden Gardener BB, Mavrodi DV, Bonsall RF, Weller DM, Thomashow LS (2001) Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent pseudomonas species. Phytopathology 91:35–43

    CAS  PubMed  Google Scholar 

  • McCoy CW, Omoto C, Mazet I, Vey A (1992) Biological activity of crude filtrates and hirsutellin A to mosquitoes and phytophagous arthropods. In: Proceedings of the abstracts 120 XXV annual meeting. Society of Invertebrate Pathology, Heidelberg

    Google Scholar 

  • Milner RJ (1997) Prospects for biopesticides for aphid control. Entomophaga 42:227

    Google Scholar 

  • Mnif I, Ghribi D (2015) Potential of bacterial derived biopesticides in pest management. Crop Prot 77:52–64

    Google Scholar 

  • Mollah MMI, Yeasmin F, Kim Y (2020) Benzylideneacetone and other phenylethylamide bacterial metabolites induce apoptosis to kill insects. J of Asia-Pacific Ento 23(2):449–457

    Google Scholar 

  • Morgan JAW, Sergeant M, Ellis D, Ousley M, Jarrett P (2001) Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 67(5):2062–2069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoletti R, De Stefano M, De Stefano S, Trincone A, Marziano F (2004) Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates. Mycopathologia 158:465–474

    CAS  PubMed  Google Scholar 

  • Niu B, Vater J, Rueckert C, Blom J, LehmannM RJJ, Chen XH, Wang Q, Borriss R (2013) Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol 13(137)

    Google Scholar 

  • Niu S, Liu D, Hu X, Proksch P, Shao Z, Lin W (2014) Spiromastixones A–O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus. J Nat Prod 77:1021–1030

    CAS  PubMed  Google Scholar 

  • Nollmann FI, Heinrich AK, Brachmann AO, Morrisseau C, Mukherjee K, Casanova-Torres AM, Kleinhans D, Kinski S, Schultz K, Beeton M, Kaiser M, Chu YY, Ke LP, Thanwisai A, Bozhuyuk KAJ, Chantratita N, Gotz F, Waterfield NR, Vilcinskas A, Stelzer EHK, Goodrich-Blair H, Hammock BD, Bode HB (2015) A photorhabdus natural product inhibits insect juvenile hormone epoxide hydrolase. Chembiochem 16:766–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ojcious DM, Zychlinsky A, Zheng LM, Young JDE (1991) Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp Cell Res 197:43–49

    Google Scholar 

  • Okuyama A, Machiyama N, Kinoshita T, Tanaka N (1971) Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochem Biophys Res Commun 43:196–199

    CAS  PubMed  Google Scholar 

  • Oliveira DF, Santos Junior HM, Dos Nunes AS et al (2014) Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in-silico interaction with a putative phosphoribosyltransferase from M. incognita. An Acad Bras Cienc 86:525–538

    CAS  PubMed  Google Scholar 

  • Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks Pest Manage 26:203–206. https://doi.org/10.1564/v26_oct_04

    Article  Google Scholar 

  • Onofre SB, Riveros Gonzalez R, Messias CL, Azevedo JL, Barros NMD (2002) LC50 of the peptide produced by the entomopathogenic fungus Nomuraea rileyi (Farlow) Samson active against third instar larvae of Anticarsia gemmatalis (Lep.: Noctuidae). Braz Arch Biol Technol 45:156–163

    Google Scholar 

  • Orr N, Shaffner AJ, Richey K, Crouse GD (2009) Novel mode of action of spinosad: receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pestic Biochem Physiol 95:1–5

    CAS  Google Scholar 

  • Pan X, Yang Y, Zhang JR (2014) Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 3:23

    Google Scholar 

  • Parada RY, Oka K, Yamagishi D, Kodama M, Otani H (2007) Destruxin B produced by Alternaria brassicae does not induce accessibility of host plants to fungal invasion. Physiol Mol Plant Pathol 71:48–54

    CAS  Google Scholar 

  • Pelizza SA, LopezLastra CC, Becnel JJ, Bisaro V, Garcia JJ (2007) Biotic and abiotic factors affecting Leptolegnia chapmanii infectionin Aedesaegypti. J Amer Mosq Control Assoc 23:177–181

    Google Scholar 

  • Pelizza SA, Scorsetti AC, Tranchida MC (2013) The sublethal effects of the entomopathicfungus Leptolegnia chapmanii on some biological parameters of the dengue vector Aedes aegypti. J Insect Sci 13:22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pell JK, Eilenberg J, Hajek AE, Steinkraus DC (2001) Biology, ecology and pest management potential of Entomophthorales. In: Butt TM (ed) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 71–153

    Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. MicrobiolMol Biol Rev 71:255–281

    CAS  Google Scholar 

  • Poldermans B, Goosen N, Van Knippenberg PH (1979) Studies on the function of two adjacent N6, N6- dimethyladenosines near the 3′ end of 16 S ribosomal RNA of Escherichia coli. I. the effect of kasugamycin on initiation of protein synthesis. J Biol Chem 254:9085–9089

    CAS  PubMed  Google Scholar 

  • Promdonkoy B, Ellar DJ (2003) Investigation of the pore-forming mechanism of a cytolytic δ-endotoxin from Bacillus thuringiensis. Biochem J 374:255–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prompiboon P, Bhumiratana A, Ruchirawat S, Boucias DG, Wiwat C (2008) Isolation of ergosterol peroxide from Nomura eariley iinfected larvae of tobacco cutworm. World J Microbiol Biotechnol 24:2909

    CAS  Google Scholar 

  • Quarles W (2013) New bio pesticides for IPM and organic production. IPM Pract 33:1–20

    Google Scholar 

  • Ramette A, Frapolli M, Défago G, Moënne-Loccoz Y (2003) Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol Plant Microbe Interact 16:525–535

    CAS  PubMed  Google Scholar 

  • Rao YK, Tsou CH, Tzeng YM (2006) Antioxidants enhanced production of destruxin E from cultivation of Metarhizium anisopliae. Appl Microbiol Biotechnol 73:519–524

    CAS  PubMed  Google Scholar 

  • Reddy KVN, Paschapur A (2020) Employing environmentally safer and novel synthetic insecticides in organic farming for eco-friendly pest management. Indian Farmer 7(04):267–272

    Google Scholar 

  • Rezzonico F, Zala M, Keel C, Duffy B, Moënne-Loccoz Y, Défago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173:861–872

    CAS  PubMed  Google Scholar 

  • Rosenblitt A, Agosin E, Delgado J, Pérez-Correa R (2000) Solid substrate fermentation of Monascus purpureus; growth, carbon balance and consistency analysis. Biotechnol Prog 16:152–162

    CAS  PubMed  Google Scholar 

  • Sandhu SS, Sharma AK, Beniwal V, Goel G, Batra P, Kumar A, Malhotra S (2012) Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. J Pathol 2012:126819

    Google Scholar 

  • Sauter H, Ammermann E, Roehl F (1996) Strobilurins—from natural products to a new class of fungicides. In: Copping LG (ed) Crop protection agents from nature: natural products and analogues. Royal Soc. Chem, Cambridge, pp 50–81

    Google Scholar 

  • Saxena S, Pandey AK (2001) Microbial metabolites as eco-friendly agrochemicals for the next millennium. Appl Microbiol Biotechnol 55(4):395–403

    CAS  PubMed  Google Scholar 

  • Sayyed AH, Crickmore N, Wright DJ (2001) Cyt1Aa from Bacillus thuringiensis subspisraelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl Environ Microbiol 67:5859–5861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnepf E, Crickmore NV, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sebesta K, Horska K (1970) Mechanism of inhibition of DNA-dependent RNA polymerase by exotoxin of Bacillus thuringiensis. Biochem Biophys Acta 209:357–376

    CAS  PubMed  Google Scholar 

  • Shahid I, Rizwan M, Baig DN, Salem RS, Mali KA, Mehnaz S (2017) Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis and P. aurantiaca strains isolated from cactus, cotton, and para grass. J Microbiol Biotechnol 27:480–491

    CAS  PubMed  Google Scholar 

  • Sharma CB, Prasad SS, Pai SB, Sharma S (1976) The exotoxin of bacillus thuringiensis A new C-mitotic agent. Experientia 32:1465–1466

    CAS  PubMed  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. J Phytopathol 151:231–238

    Google Scholar 

  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37(1):6–11

    CAS  PubMed  Google Scholar 

  • Singh D, Son SY, Lee CH (2016) Perplexing metabolomes in fungal-insect trophic interactions: a Terra incognita of mycobiocontrol mechanisms. Front Microbiol 7:1678

    PubMed  PubMed Central  Google Scholar 

  • Snyder DE, Meyer J, Zimmermann AG, Qiao M, Gissendanner SJ, Cruthers LR, Slone RL, Young DR (2007) Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs. Vet Parasitol 150:345–351

    CAS  PubMed  Google Scholar 

  • Soberon M, Gill SS, Bravo A (2009) Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66:1337–1349

    CAS  PubMed  Google Scholar 

  • Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure–activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905

    CAS  PubMed  Google Scholar 

  • Steinrauf LK (1985) Beauvericin and other enniatins. In: Sigel H (ed) Metal ions in biological systems. Dekker, New York, pp 140–171

    Google Scholar 

  • Stephens EJ, Losey JE, Allee LL, DiTommaso A, Bodner C, Breyre A (2012) The impact of Cry3Bb Bt-maize on two guilds of beneficial beetles. Agric Ecosyst Environ 156:72–81

    Google Scholar 

  • Strong L, Brown TA (1987) Avermectins in insect control and biology: a review. Bull Entomol Res 77:357–389

    CAS  Google Scholar 

  • Su X, Zou F, Guo Q, Huang J, Chen TX (2001) A report on a mosquito-killing fungus Pythium carolinianum. Fungal Divers 7:129–133

    Google Scholar 

  • Subbanna ARNS, Stanley J, Rajasekhara H, Mishra KK, Pattanayak A, Bhowmick R (2020) Perspectives of microbial metabolites as pesticides in agricultural pest management. In: Mérillon J-M, Ramawat KG (eds) Co-evolution of secondary metabolites, reference series in phytochemistry. Springer, Cham

    Google Scholar 

  • Sussmuth RD, Mainz A (2017) Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed Engl 56:3770–3821

    PubMed  Google Scholar 

  • Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vagvolgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma—a review. Acta Microbiol Immunol Hung 52:137–168

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Omura S (1993) Agroactive compounds of microbial origin. Annu Rev Microbiol 47(1):57–87

    CAS  PubMed  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 23:192–208

    Google Scholar 

  • Thomas WE, Ellar DJ (1983) Mechanism of action of bacillus thuringiensis var israelensis insecticidal deltaendotoxin. FEBS Lett 154:362–368

    CAS  PubMed  Google Scholar 

  • Tian BY, Li N, Lian LH, Liu JW, Yang JK, Zhang KQ (2006) Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch Microbial 186:297–305

    CAS  Google Scholar 

  • Uma Devi K, Padmavathi J, UmaMaheswara Rao C, Khan AAP, Mohan MC (2008) A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Sci Tech 18:975

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Van Pée KH, Ligon JM (2000) Biosynthesis of pyrrolnitrin and other phenylpyrrole derivatives by bacteria. Nat Prod Rep 17:157–164

    PubMed  Google Scholar 

  • Vatanparast M, Ahmed S, Sajjadian SM, Kim Y (2019) A prophylactic role of a secretory PLA2 of Spodoptera exigua against entomopathogens. Dev Comp Immunol 95:108–117

    CAS  PubMed  Google Scholar 

  • Vey A, Hoagland R, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM et al (eds) Fungi as biocontrol agents: progress, problems, and potential. CAB International, Wallingford, pp 311–346

    Google Scholar 

  • Vilcinskas A, Matha V, Goetz P (1997) Inhibition of phagocytic activity of plasmatocytes isolated from galleria melonella by entomogenous fungi and their secondary metabolites. J Insect Physiol 43:475–483

    CAS  Google Scholar 

  • Vining LC (1992) Role of secondary metabolites from microbes. In: Secondary metabolites: their function and evolution. Wiley, Chichester, pp 184–198

    Google Scholar 

  • Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24(6):673

    CAS  PubMed  Google Scholar 

  • Vyas N, Dua KK, Prakash S (2007) Efficacy of Lagenidium giganteum metabolites on mosquito larvae with reference to non target organisms. Parasitol Res 101:385–390

    PubMed  Google Scholar 

  • Wang X, Li Y, Zhang X, Lai D, Zhou L (2017) Structural diversity and biological activities of the cyclodipeptides from fungi. Molecules 22:20–26

    Google Scholar 

  • Waterfield NR, Bowen DJ, Fetherston JD, Perry RD (2001) The tc genes of Photorhabdus: a growing family. Trends Microbiol 9(4):185–191

    CAS  PubMed  Google Scholar 

  • Wedge DE, Duke SO (2006) Finding new fungicides from natural sources. Am Chem Soc Symp Ser 927:152–167

    CAS  Google Scholar 

  • Williamson NR, Fineran PC, Leeper FJ, Salmond GPC (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4:887–899

    CAS  PubMed  Google Scholar 

  • Yang KL, Wei MY, Shao CL, Fu XM, Guo ZY, Xu RF, Zheng CJ, She ZG, Lin YC, Wang CY (2012) Antibacterial anthraquinone derivatives from a sea anemone-derived fungus Nigrospora sp. J Nat Prod 75:935–941

    CAS  PubMed  Google Scholar 

  • Yoon GY, Lee YS, Lee SY, Park RD, Hyun HN, Nam Y, Kim KY (2012) Effects on of chitinase, glucanase and a secondary metabolite from GY525. Nematology 14:175–184

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Directors of IACR-VPKAS, ICAR-RCER, and ICAR-IARI and Head of Department, Department of Entomology, UAS, Bangalore for their constant guidance and support throughout the manuscript preparation. We also acknowledge the authors of different scientific papers whose results made this book chapter possible.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maharana, C. et al. (2022). Secondary Metabolites of Microbials as Potential Pesticides. In: Chakrabarti, S.K., Sharma, S., Shah, M.A. (eds) Sustainable Management of Potato Pests and Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-7695-6_5

Download citation

Publish with us

Policies and ethics