Skip to main content

Additive Manufacturing Technologies for Biomedical Implants Using Functional Biocomposites

  • Chapter
  • First Online:
High-Performance Composite Structures

Abstract

The tremendous development of Additive Manufacturing (AM) made significant progress in biomedical and tissue engineering applications. AM has a smart manufacturing capability for building three dimensional (3D) complex geometries of biomedical implants with controlled process parameters and by utilizing innovative materials especially, functional biocomposites. The patient specific and customized implant fabrication could be achieved with high success rate by using AM technology with tailorable porosity. After World War II, biomaterials gained noteworthy attention due to desirable characteristics which can replace dysfunctioning human organs. Emergence of AM technologies  and  its collaboration with biomaterials made has a significant breakthrough in healthcare industry. Typical AM technologies mandated for developing biomedical implants are considered as an effective approach due to its versatility. This chapter aims to comprehensively discuss about the construction of functional biocomposites using AM technologies for potential biomedical implants. There has been many investigations made on various functional composites based on polymers, ceramics, metals and functionally graded materials (FGMs) for different biomedical implants such as hard and soft tissues, orthopedic and dental applications. The mechanical and biological behaviour of AM processed implants which makes them suitable for AM technology are further discussed with salient applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan Q et al (2018) A review of 3D printing technology for medical applications. Engineering 4(5):729–742. https://doi.org/10.1016/j.eng.2018.07.021

    Article  CAS  Google Scholar 

  2. Joung YH (2013) Development of implantable medical devices: from an engineering perspective. Int Neurourol J 17(3):98–106. https://doi.org/10.5213/inj.2013.17.3.98

    Article  Google Scholar 

  3. Zadpoor AA (2017) Design for additive bio-manufacturing: from patient-specific medical devices to rationally designed meta-biomaterials. Int J Mol Sci 18(8):1607. https://doi.org/10.3390/ijms18081607

    Article  Google Scholar 

  4. Touri M, Kabirian F, Saadati M, Ramakrishna S, Mozafari M (2019) Additive manufacturing of biomaterials—the evolution of rapid prototyping. Adv Eng Mater 21(2):1800511. https://doi.org/10.1002/adem.201800511

    Article  CAS  Google Scholar 

  5. Singh AV et al (2019) The adoption of three-dimensional additive manufacturing from biomedical material design to 3D organ printing. Appl Sci (Switzerland) 9(4):811. https://doi.org/10.3390/app9040811

    Article  CAS  Google Scholar 

  6. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A (2017) A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev 108:39–50. https://doi.org/10.1016/j.addr.2016.03.001

    Article  CAS  Google Scholar 

  7. Coelho G, Chaves TMF, Goes AF, Del Massa EC, Moraes O, Yoshida M (2018) Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Child’s Nerv Syst 34(4):749–756. https://doi.org/10.1007/s00381-017-3616-6

    Article  Google Scholar 

  8. Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L (2015) 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposustissue regeneration. Int J Mol Sci 16(7):15118–15135. https://doi.org/10.3390/ijms160715118

    Article  CAS  Google Scholar 

  9. Arabnejad S, Johnston B, Tanzer M, Pasini D (2017) Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res 35(8):1774–1783. https://doi.org/10.1002/jor.23445

    Article  CAS  Google Scholar 

  10. Quan Z et al (2015) Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Mater Today 18(9):503–512. https://doi.org/10.1016/j.mattod.2015.05.001

    Article  CAS  Google Scholar 

  11. Liu Y, Wang W, Zhang LC (2017) Additive manufacturing techniques and their biomedical applications. Family Med Community Health 5(4):286–298. https://doi.org/10.15212/FMCH.2017.0110

    Article  Google Scholar 

  12. Velu R, Calais T, Jayakumar A, Raspall F (2020) A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials 13(1):92. https://doi.org/10.3390/ma13010092

    Article  CAS  Google Scholar 

  13. Han X et al (2019) Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. J Clin Med 8(2):240. https://doi.org/10.3390/jcm8020240

    Article  CAS  Google Scholar 

  14. Ahangar P, Cooke ME, Weber MH, Rosenzweig DH (2019) Current biomedical applications of 3D printing and additive manufacturing. Appl Sci (Switzerland) 9(8):1713. https://doi.org/10.3390/app9081713

    Article  CAS  Google Scholar 

  15. Wilkes J, Hagedorn YC, Meiners W, Wissenbach K (2013) Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyping J 19(1):51–57. https://doi.org/10.1108/13552541311292736

    Article  Google Scholar 

  16. Hegab HA (2016) Design for additive manufacturing of composite materials and potential alloys: a review. Manuf Rev 3:11. https://doi.org/10.1051/mfreview/2016010

    Article  Google Scholar 

  17. Jindal S, Manzoor F, Haslam N, Mancuso E (2021) 3D printed composite materials for craniofacial implants: current concepts, challenges and future directions. Int J Adv Manuf Technol 112(3–4):635–653. https://doi.org/10.1007/s00170-020-06397-1

    Article  Google Scholar 

  18. Migliaresi C, Nicolais L (1980) Composite materials for biomedical applications. Int J Artif Organs 3(2):114–118. https://doi.org/10.1177/039139888000300213

    Article  CAS  Google Scholar 

  19. Bandyopadhyay A, Heer B (2018) Additive manufacturing of multi-material structures. Mater Sci Eng R Rep 129(March):1–16. https://doi.org/10.1016/j.mser.2018.04.001

    Article  Google Scholar 

  20. Gobbi SJ (2019) Requirements for selection/development of a biomaterial. Biomed J Sci Tech Res 14(3):1–6. https://doi.org/10.26717/bjstr.2019.14.002554

    Article  Google Scholar 

  21. Varghese V (2011) Finite element-based design of hip joint prosthesis. https://doi.org/10.13140/RG.2.1.1903.8808

  22. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Dev Ther 12:3117–3145. https://doi.org/10.2147/DDDT.S165440

    Article  CAS  Google Scholar 

  23. Szymczyk-Ziółkowska P, Łabowska MB, Detyna J, Michalak I, Gruber P (2020) A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocyber Biomed Eng 40(2):624–638. https://doi.org/10.1016/j.bbe.2020.01.015

    Article  Google Scholar 

  24. Yuan S, Shen F, Chua CK, Zhou K (2019) Polymeric composites for powder-based additive manufacturing: materials and applications. Prog Polym Sci 91:141–168. https://doi.org/10.1016/j.progpolymsci.2018.11.001

    Article  CAS  Google Scholar 

  25. Whenish R, Antony M, Balaji T, Selvam A (2021) Design and performance of additively manufactured lightweight bionic hand design and performance of additively manufactured lightweight bionic hand. In: AIP Conference Proceedings, vol 020028

    Google Scholar 

  26. Regassa Y, Lemu HG, Sirabizuh B (2019) Trends of using polymer composite materials in additive manufacturing. In: IOP conference series: materials science and engineering, vol 659, no 1. https://doi.org/10.1088/1757-899X/659/1/012021

  27. Dziadek M, Stodolak-zych E, Cholewa-kowalska K (2016) SC. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2016.10.014

  28. Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB (2012) Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int J Biomater 2012 https://doi.org/10.1155/2012/245727

  29. Saad M, Akhtar S (2018) Science direct composite polymer in orthopedic implants: a review. Mater Today: Proc 5(9):20224–20231. https://doi.org/10.1016/j.matpr.2018.06.393

    Article  CAS  Google Scholar 

  30. Ahlhelm M et al (2015) Innovative and novel manufacturing methods of ceramics and metal-ceramic composites for biomedical applications. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2015.12.020

    Article  Google Scholar 

  31. Dormal T, Boilet L, Ceramic B, Ceramic B, Cambier F, Society EC (2013) Additive manufacturing of biocompatible ceramics. 2016:2018–2022. https://doi.org/10.14743/apem2013.2.157

  32. Hajiali F, Tajbakhsh S, Shojaei A (2017) Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev 1–44. https://doi.org/10.1080/15583724.2017.1332640

  33. Yang Y et al (2020) Laser additive manufacturing of Mg-based composite with improved degradation behaviour. Virtual Phys Prototyping 1–16. https://doi.org/10.1080/17452759.2020.1748381

  34. Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185–200. https://doi.org/10.1016/j.jmapro.2016.11.006

    Article  Google Scholar 

  35. Attar H, Soro N, Kent D, Dargusch MS (2020) Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: advantages, challenges and opinion for future development. J Alloys Compd 827:154263. https://doi.org/10.1016/j.jallcom.2020.154263

    Article  CAS  Google Scholar 

  36. Hao Y, Li S, Yang R (2016) Biomedical titanium alloys and their additive manufacturing. Rare Met. https://doi.org/10.1007/s12598-016-0793-5

    Article  Google Scholar 

  37. Mahmoud D, Elbestawi MA (2017) Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review, 1–19. https://doi.org/10.3390/jmmp1020013

  38. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  39. Srinivasan R, Ruban W, Deepanraj A, Bhuvanesh R, Bhuvanesh T (2020) Effect on infill density on mechanical properties of PETG part fabricated by fused deposition modelling. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2020.03.797

    Article  Google Scholar 

  40. Selvam A, Mayilswamy S, Whenish R, Velu R, Subramanian B (2020) Preparation and evaluation of the tensile characteristics of carbon fiber rod reinforced 3D printed thermoplastic composites. J Compos Sci 5(1):8. https://doi.org/10.3390/jcs5010008

    Article  CAS  Google Scholar 

  41. Haleem A, Javaid M (2019) Additive manufacturing. Clin Epidemiol Glob Health. https://doi.org/10.1016/j.cegh.2019.08.002

    Article  Google Scholar 

  42. Ruban W, Vijayakumar V, Dhanabal P, Pridhar T (2014) Effective process parameters in selective laser sintering. Int J Rapid Manuf 4(2/3/4):148. https://doi.org/10.1504/ijrapidm.2014.066036

    Article  Google Scholar 

  43. Mota C, Puppi D, Chiellini F, Chiellini E (2012) Additive manufacturing techniques for the production of tissue engineering constructs. https://doi.org/10.1002/term

  44. Srinivasan R, Pridhar T, Ramprasath LS, Charan NS, Ruban W (2020) Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM). Mater Today: Proc. https://doi.org/10.1016/j.matpr.2020.03.788

    Article  Google Scholar 

  45. Selvam A, Mayilswamy S, Whenish R (2020) Strength improvement of additive manufacturing components by reinforcing carbon fiber and by employing bioinspired interlock sutures. J Vinyl Add Tech. https://doi.org/10.1002/vnl.21766

    Article  Google Scholar 

  46. Ibrahim MZ, Sarhan AAD, Yusuf F, Hamdi M (2017) Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants—a review article. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2017.04.231

    Article  Google Scholar 

  47. Journal B, Pita VJRR, Melo PA, Nele M, Pinto JC (2011) Production of bone cement composites: effect of fillers, co-monomer and particles properties. Brazilian J Chem Eng 28(02):229–241

    Article  Google Scholar 

  48. Velu R, Kamarajan BP, Ananthasubramanian M, Ngo T, Singamneni S (2018) Post-process composition and biological responses of laser sintered PMMA and β-TCP composites. J Mater Res 33(14):1987–1998. https://doi.org/10.1557/jmr.2018.76

    Article  CAS  Google Scholar 

  49. Velu R, Singamneni S (2014) Selective laser sintering of polymer biocomposites based on polymethyl methacrylate. J Mater Res 29(17):1883–1892. https://doi.org/10.1557/jmr.2014.211

    Article  CAS  Google Scholar 

  50. Velu R, Singamneni S (2015) Evaluation of the influences of process parameters while selective laser sintering PMMA powders. Proc Inst Mech Eng C J Mech Eng Sci 229(4):603–613. https://doi.org/10.1177/0954406214538012

    Article  CAS  Google Scholar 

  51. Pinto C (2006) Modeling methyl methacrylate (MMA) polymerization for bone cement production. In: Macromolecular Symposia, pp 13–23. https://doi.org/10.1002/masy.200651102

  52. Cuadrado A, Yánez A, Martel O, Deviaene S, Monopoli D (2017) NU SC. Mater Des. https://doi.org/10.1016/j.matdes.2017.09.045

    Article  Google Scholar 

  53. Murr LE (2019) Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: an overview. Integr Med Res 9(1):1087–1103. https://doi.org/10.1016/j.jmrt.2019.12.015

    Article  CAS  Google Scholar 

  54. Zhang X, Fang G, Leeflang S, Zadpoor AA, Zhou J (2019) Acta biomaterialia topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomater 84:437–452. https://doi.org/10.1016/j.actbio.2018.12.013

    Article  CAS  Google Scholar 

  55. Ponader S, et al (2009) In vivo performance of selective electron beam-melted Ti-6Al-4V structures. https://doi.org/10.1002/jbm.a.32337

  56. Nune KC, Misra RDK, Gaytan SM, Murr LE (2014) Interplay between cellular activity and three-dimensional scaffold-cell constructs with different foam structure processed by electron beam melting. J Biomed Mater Res A 1677–1692. https://doi.org/10.1002/jbm.a.35307

  57. Shi J, Yang J, Li Z, Zhu L, Li L, Wang X (2017) SC. J Alloys Compd 728:1043–1048. https://doi.org/10.1016/j.jallcom.2017.08.190

  58. Wu S, Li Y, Zhang Y, Li X, Yuan C, Hao Y (2013) Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs 37(12):E191–E201. https://doi.org/10.1111/aor.12153

    Article  CAS  Google Scholar 

  59. Li X et al (2012) Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo. Plos one 7(12):1–12. https://doi.org/10.1371/journal.pone.0052049

    Article  CAS  Google Scholar 

  60. Bandyopadhyay A, Espana F, Balla VK, Bose S, Davies NM (2011) NIH public access 6(4):1640–1648. https://doi.org/10.1016/j.actbio.2009.11.011.Influence

  61. Wieding J, Jonitz A, Bader R (2012) The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials 5(8):1336–1347. https://doi.org/10.3390/ma5081336

    Article  CAS  Google Scholar 

  62. Thomsen P, Malmstro J, Emanuelsson L, Rene M, Snis A (2008) Electron beam-melted, free-form-fabricated titanium alloy implants: material surface characterization and early bone response in rabbits. https://doi.org/10.1002/jbm.b.31250

  63. Gajendiran AM, Choi J, Kim S, Kim K, Shin H, Koo H (2017) Conductive applications biomaterials for tissue engineering. Korean Soc Ind Eng Chem. https://doi.org/10.1016/j.jiec.2017.02.031

    Article  Google Scholar 

  64. Zadpoor AA, Malda J (2017) Additive manufacturing of biomaterials, tissues, and organs. Ann Biomed Eng 45(1):1–11. https://doi.org/10.1007/s10439-016-1719-y

    Article  Google Scholar 

  65. Barba D, Alabort E, Reed RC (2019) Acta biomaterialia synthetic bone: design by additive manufacturing. Acta Biomater 97:637–656. https://doi.org/10.1016/j.actbio.2019.07.049

    Article  CAS  Google Scholar 

  66. Murr LE (2017) Additive manufacturing of biomedical devices: an overview. Mater Technol 7857(November):1–14. https://doi.org/10.1080/10667857.2017.1389052

    Article  CAS  Google Scholar 

  67. Wang X (2019) Bioartificial organ manufacturing technologies. Cell Transplant 28(77):5–17. https://doi.org/10.1177/0963689718809918

    Article  Google Scholar 

  68. Singh S, Ramakrishna S (2017) Biomedical applications of additive manufacturing: present and future. Curr Opin Biomed Eng. https://doi.org/10.1016/j.cobme.2017.05.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whenish, R., Velu, R., Anand Kumar, S., Ramprasath, L.S. (2022). Additive Manufacturing Technologies for Biomedical Implants Using Functional Biocomposites. In: Praveen Kumar, A., Sadasivuni, K.K., AlMangour, B., Abdul bin Majid, M.S. (eds) High-Performance Composite Structures. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-7377-1_2

Download citation

Publish with us

Policies and ethics