Skip to main content

Robust Template Matching via Hierarchical Convolutional Features from a Shape Biased CNN

  • Conference paper
  • First Online:
The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021)

Abstract

Finding a template in a search image is an important task underlying many computer vision applications. Recent approaches perform template matching in a deep feature-space, produced by a convolutional neural network (CNN), which is found to provide more tolerance to changes in appearance. In this article, we investigate whether enhancing the CNN’s encoding of shape information can produce more distinguishable features, so as to improve the performance of template matching. This investigation results in a new template matching method that produces state-of-the-art results in a standard benchmark. To confirm these results, we also create a new benchmark and show that the proposed method also outperforms existing techniques on this new dataset. Our code and dataset is available at: https://github.com/iminfine/Deep-DIM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fullyconvolutional siamese networks for object tracking. In: European Conference on Computer Vision. pp. 850–865. Springer, Berlin (2016)

    Google Scholar 

  2. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Robust visual tracking via hierarchical convolutional features. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2709–2723 (2018)

    Google Scholar 

  3. Ahuja, K., Tuli, P.: Object recognition by template matching using correlations and phase angle method. Int. J. Adv. Res. Comput. Commun. Eng. 2(3), 1368–1373 (2013)

    Google Scholar 

  4. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  5. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  6. Chhatkuli, A., Pizarro, D., Bartoli, A.: Stable template-based isometric 3d reconstruction in all imaging conditions by linear least-squares. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 708–715 (2014)

    Google Scholar 

  7. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  8. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  9. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3367–3375 (2015)

    Google Scholar 

  10. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3d pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3109–3118 (2015)

    Google Scholar 

  11. Cheng, J., Wu, Y., AbdAlmageed, W., Natarajan, P.: QATM: quality-aware template matching for deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11553–11562 (2019)

    Google Scholar 

  12. Kat, R., Jevnisek, R., Avidan, S.: Matching pixels using co-occurrence statistics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1751–1759 (2018)

    Google Scholar 

  13. Kim, J., Kim, J., Choi, S., Hasan, M.A., Kim, C.: Robust template matching using scale-adaptive deep convolutional features. In: 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 708–711. IEEE (2017)

    Google Scholar 

  14. Oron, S., Dekel, T., Xue, T., Freeman, W.T., Avidan, S.: Best-buddies similarity—robust template matching using mutual nearest neighbors. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1799–1813 (2017)

    Article  Google Scholar 

  15. Talmi, I., Mechrez, R., Zelnik-Manor, L.: Template matching with deformable diversity similarity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 175–183 (2017)

    Google Scholar 

  16. Kriegeskorte, N.: Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015)

    Article  Google Scholar 

  17. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv:1811.12231 (2018)

  18. Spratling, M.W.: Explaining away results in accurate and tolerant template matching. Pattern Recogn. 107337 (2020)

    Google Scholar 

  19. Kersten, D., Mamassian, P., Yuille, A.: Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004)

    Article  Google Scholar 

  20. Spratling, M.W.: Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Comput. 24(1), 60–103 (2012)

    Article  MathSciNet  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  24. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  25. Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans. Image Process. 24(12), 5630–5644 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge use of the research computing facility at King’s College London, Rosalind (https://rosalind.kcl.ac.uk), and the Joint Academic Data science Endeavour (JADE) facility. This research was funded by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, B., Spratling, M.W. (2022). Robust Template Matching via Hierarchical Convolutional Features from a Shape Biased CNN. In: Yao, J., Xiao, Y., You, P., Sun, G. (eds) The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021). Lecture Notes in Electrical Engineering, vol 813. Springer, Singapore. https://doi.org/10.1007/978-981-16-6963-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6963-7_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6962-0

  • Online ISBN: 978-981-16-6963-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics