Skip to main content

Teaching Principles of DoE as an Element of QbD for Pharmacy Students

  • Chapter
  • First Online:
Computer Aided Pharmaceutics and Drug Delivery

Abstract

Design of Experiment (DoE) is an emerging field that combines mathematics and statistics in order to establish successful cause–effect correlations between factors and responses. Moreover, with the help of planned experiments, accurate predictions of outcomes based on the constructed models can be achieved. The huge development and advent of the computer software, especially those possessing user-friendly interfaces, could help in relaying the concepts of DoE as a crucial element of quality to the undergraduate students. Implementing this concept in the mind of pharmacy students would have futuristic beneficial impacts on the pharmaceutical industry. This chapter introduces a simple way of conveying the topic to the students using fishbone diagrams and through conducting a step-by-step protocol of an experimental design used for modeling a drug–carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit AP, Ravish JP (2018) Nanomedicine for intranasal delivery to improve brain uptake. Curr Drug Deliv 15:461–469. https://doi.org/10.2174/1567201814666171013150534

    Article  CAS  Google Scholar 

  2. Hathout RM, Metwally AA (2016) Towards better modelling of drug-loading in solid lipid nanoparticles: molecular dynamics, docking experiments and Gaussian Processes machine learning. Eur J Pharm Biopharm 108:262–268. https://doi.org/10.1016/j.ejpb.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  3. Metwally AA, Hathout RM (2015) Computer-assisted drug formulation design: novel approach in drug delivery. Mol Pharm 12:2800–2810. https://doi.org/10.1021/mp500740d

    Article  CAS  PubMed  Google Scholar 

  4. Swarbrick B (2018) Chapter 6—Quality by design in practice. In: Ferreira AP, Menezes JC, Tobyn M (eds) Multivariate analysis in the pharmaceutical industry. Academic, pp 125–171. https://doi.org/10.1016/B978-0-12-811065-2.00007-2

    Chapter  Google Scholar 

  5. Wang L, Dong J, Chen J, Eastoe J, Li X (2009) Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci 330:443–448. https://doi.org/10.1016/j.jcis.2008.10.077

    Article  CAS  PubMed  Google Scholar 

  6. Beg S, Hasnain MS, Rahman M, Swain S (2019) Chapter 1—Introduction to Quality by Design (QbD): fundamentals, principles, and applications. In: Beg S, Hasnain MS (eds) Pharmaceutical quality by design. Academic, pp 1–17. https://doi.org/10.1016/B978-0-12-815799-2.00001-0

    Chapter  Google Scholar 

  7. Beg S, Swain S, Rahman M, Hasnain MS, Imam SS (2019) Chapter 3—Application of Design of Experiments (DoE) in pharmaceutical product and process optimization. In: Beg S, Hasnain MS (eds) Pharmaceutical quality by design. Academic, pp 43–64. https://doi.org/10.1016/B978-0-12-815799-2.00003-4

    Chapter  Google Scholar 

  8. Abdelhamid HN, El-Bery HM, Metwally AA, Elshazly M, Hathout RM (2019) Synthesis of CdS-modified chitosan quantum dots for the drug delivery of Sesamol. Carbohydr Polym 214:90–99. https://doi.org/10.1016/j.carbpol.2019.03.024

    Article  CAS  PubMed  Google Scholar 

  9. Mehanny M, Hathout RM, Geneidi AS, Mansour S (2017) Studying the effect of physically-adsorbed coating polymers on the cytotoxic activity of optimized bisdemethoxycurcumin loaded-PLGA nanoparticles. J Biomed Mater Res 105:1433–1445. https://doi.org/10.1002/jbm.a.36028

    Article  CAS  Google Scholar 

  10. Hathout RM, Gad HA, Metwally AA (2017) Gelatinized-core liposomes: toward a more robust carrier for hydrophilic molecules. J Biomed Mater Res A 105:3086–3092. https://doi.org/10.1002/jbm.a.36175

    Article  CAS  PubMed  Google Scholar 

  11. Hathout RM, Gad HA, Abdel-Hafez SM, Nasser N, Khalil N, Ateyya T et al (2019) Gelatinized core liposomes: a new Trojan horse for the development of a novel timolol maleate glaucoma medication. Int J Pharm 556:192–199. https://doi.org/10.1016/j.ijpharm.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  12. Yehia R, Hathout RM, Attia DA, Elmazar MM, Mortada ND (2017) Anti-tumor efficacy of an integrated methyl dihydrojasmonate transdermal microemulsion system targeting breast cancer cells: in vitro and in vivo studies. Colloids Surf B Biointerfaces 155:512–521. https://doi.org/10.1016/j.colsurfb.2017.04.031

    Article  CAS  PubMed  Google Scholar 

  13. Mandlik SK, Adhikari S, Deshpande AA (2012) Application of simplex lattice design in formulation and development of buoyant matrices of dipyridamole. J Appl Pharm Sci 2:107–111. https://doi.org/10.7324/JAPS.2012.21221

    Article  CAS  Google Scholar 

  14. Mukherjee R, Halder A, Sansare S, Naik S, Chaudhuri B (2020) A simplex centroid design to quantify triboelectric charging in pharmaceutical mixtures. J Pharm Sci 109:1765–1771. https://doi.org/10.1016/j.xphs.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  15. Naguib SS, Hathout RM, Mansour S (2017) Optimizing novel penetration enhancing hybridized vesicles for augmenting the in-vivo effect of an anti-glaucoma drug. Drug Deliv 24:99–108. https://doi.org/10.1080/10717544.2016.1233588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Safwat S, Hathout RM, Ishak RA, Mortada ND (2017) Augmented simvastatin cytotoxicity using optimized lipid nanocapsules: a potential for breast cancer treatment. J Liposome Res 27:1–10. https://doi.org/10.3109/08982104.2015.1137313

    Article  CAS  PubMed  Google Scholar 

  17. Aziz DE, Abdelbary AA, Elassasy AI (2018) Implementing central composite design for developing transdermal diacerein-loaded niosomes: ex vivo permeation and in vivo deposition. Curr Drug Deliv 15:1330–1342. https://doi.org/10.2174/1567201815666180619105419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abdel-Hafez SM, Hathout RM, Sammour OA (2014) Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs. Int J Biol Macromol 64:334–340. https://doi.org/10.1016/j.ijbiomac.2013.11.041

    Article  CAS  PubMed  Google Scholar 

  19. Beg S, Swain S, Singh HP, Patra C, Rao ME (2012) Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech 13:1416–1427. https://doi.org/10.1208/s12249-012-9865-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Honary S, Ebrahimi P, Hadianamrei R (2014) Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Pharm Dev Technol 19:987–998. https://doi.org/10.3109/10837450.2013.846375

    Article  CAS  PubMed  Google Scholar 

  21. Marengo E, Todeschini R (1992) A new algorithm for optimal, distance-based experimental design. Chemom Intell Lab Syst 16:37–44. https://doi.org/10.1016/0169-7439(92)80076-G

    Article  CAS  Google Scholar 

  22. Abdel-Hafez SM, Hathout RM, Sammour OA (2018) Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanning microscopy. Int J Biol Macromol 108:753–764. https://doi.org/10.1016/j.ijbiomac.2017.10.170

    Article  CAS  PubMed  Google Scholar 

  23. Mohamad Zen NI, Abd Gani SS, Shamsudin R, Fard Masoumi HR (2015) The use of D-optimal mixture design in optimizing development of Okara tablet formulation as a dietary supplement. Sci World J 2015:684319. https://doi.org/10.1155/2015/684319

    Article  Google Scholar 

  24. Safwat S, Ishak RAH, Hathout RM, Mortada ND (2017) Nanostructured lipid carriers loaded with simvastatin: effect of PEG/glycerides on characterization, stability, cellular uptake efficiency and in vitro cytotoxicity. Drug Dev Ind Pharm 43:1112–1125. https://doi.org/10.1080/03639045.2017.1293681

    Article  CAS  PubMed  Google Scholar 

  25. Safwat S, Ishak RA, Hathout RM, Mortada ND (2017) Statins anticancer targeted delivery systems: re-purposing an old molecule. J Pharm Pharmacol 69:613–624. https://doi.org/10.1111/jphp.12707

    Article  CAS  PubMed  Google Scholar 

  26. Heurtault B, Saulnier P, Pech B, Venier-Julienne MC, Proust JE, Phan-Tan-Luu R et al (2003) The influence of lipid nanocapsule composition on their size distribution. Eur J Pharm Sci 18:55–61. https://doi.org/10.1016/S0928-0987(02)00241-5

    Article  CAS  PubMed  Google Scholar 

  27. Abdelrady H, Hathout RM, Osman R, Saleem I, Mortada ND (2019) Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. Eur J Pharm Sci 133:115–126. https://doi.org/10.1016/j.ejps.2019.03.016

    Article  CAS  PubMed  Google Scholar 

  28. Arai H, Suzuki T, Kaseda C, Takayama K (2009) Effect of an experimental design for evaluating the nonlinear optimal formulation of theophylline tablets using a bootstrap resampling technique. Chem Pharm Bull (Tokyo) 57:572–579. https://doi.org/10.1248/cpb.57.572

    Article  CAS  Google Scholar 

  29. Shokry M, Hathout RM, Mansour S (2018) Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: augmented in-vivo efficacy and safe histological profile. Int J Pharm 545:229–239. https://doi.org/10.1016/j.ijpharm.2018.04.059

    Article  CAS  PubMed  Google Scholar 

  30. Ossama M, Hathout RM, Attia DA, Mortada ND (2019) Enhanced allicin cytotoxicity on HEPG-2 cells using glycyrrhetinic acid surface-decorated gelatin nanoparticles. ACS Omega 4:11293–11300. https://doi.org/10.1021/acsomega.9b01580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania M. Hathout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hathout, R.M. (2022). Teaching Principles of DoE as an Element of QbD for Pharmacy Students. In: Saharan, V.A. (eds) Computer Aided Pharmaceutics and Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-16-5180-9_5

Download citation

Publish with us

Policies and ethics