Skip to main content

Influence of Alternative Fuels on Exhaust Emissions of IC Engine: A Review

  • Conference paper
  • First Online:
Renewable Energy Optimization, Planning and Control

Part of the book series: Studies in Infrastructure and Control ((sic))

Abstract

The massive use of automotive has a terrible effect on the environment. The unsafe pollutants as HC, CO, NOx, and CO2 are emitted from the IC engines during incomplete combustion using fossil fuels and caused noxious impacts on the humanitarian as well as environment. Due to the developing significance of future emission restrictions, it is required to adopt the application of alternative fuels for IC engines to minimize the exhaust pollutants and advance the combustion performance. The purpose of this review is to reveal the use of alternative fuels for vehicular engine application for spark ignition and veil the exhaust emissions of SI engines fueled with alcohol (methanol and ethanol), hydrogen, CNG, and LPG. Better physiochemical properties of alternative fuels make it an attractive fuel to minimize exhaust pollutants and reform the performance of SI engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HC:

Hhydrocarbon

NOx:

Nitrogen oxide

PM:

Narticulate matter

CO2:

Carbon dioxide

CNG:

Compressed natural gas

BTU:

British thermal units

IC:

Internal combustion

CO:

Carbon monoxide

SI:

Spark ignition

BTE:

Brake thermal efficiency

A/F:

Air/fuel

LPG:

Liquified petroleum gas

AFV:

Alternative fuel vehicle

HEV:

Hybrid electric vehicle

MBDOE:

Model-based design of experiments

MPFI:

Multi-point fuel injection

Rpm:

Revolution per minute

PFI:

Port fuel injection

GDI:

Gasoline direct injection

i-DSI:

Intelligent dual sequential ignition

References

  1. Energy Information Administration (US) and Government Publications Office eds. International Energy Outlook 2016, with Projections to 2040. Government Printing Office (2016)

    Google Scholar 

  2. Mobil, E.: The Outlook of Energy: A View to 2040 (2012). https://www.ExxonMobil.com

  3. Nel, W.P., Cooper, C.J.: Implications of fossil fuel constraints on economic growth and global warming. Energy Policy 37(1), 166–180 (2009)

    Article  Google Scholar 

  4. Zhao, D., Ji, C., Li, X., Li, S.: Mitigation of premixed flame-sustained thermoacoustic oscillations using an electrical heater. Int. J. Heat Mass Transf. 86, 309–318 (2015)

    Google Scholar 

  5. Bielaczyc, P., Woodburn, J., Szczotka, A., Pajdowski, P.: The impact of alternative fuels on fuel consumption and exhaust emissions of greenhouse gases from vehicles featuring SI engines. Energy Proc. 66, 21–24 (2015)

    Article  Google Scholar 

  6. Ramcharan, B.G.: United Nations Protection of Humanity and Its Habitat: A New International Law of Security and Protection. Brill (2016)

    Google Scholar 

  7. Stone, R.: Introduction to Internal Combustion Engines, vol. 3. Macmillan, London (1999)

    Book  Google Scholar 

  8. National Renewable Energy Laboratory, AFV and HEV Model Offerings, By Manufacturer, U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) (2019). https://afdc.energy.gov/data/. Accessed 27 Feb 2020

  9. Siwale, L., Kristóf, L., Bereczky, A., Mbarawa, M., Kolesnikov, A.: Performance, combustion and emission characteristics of n-butanol additive in methanol–gasoline blend fired in a naturally-aspirated spark ignition engine. Fuel Process. Technol. 118, 318–326 (2014)

    Article  Google Scholar 

  10. Canakci, M., Ozsezen, A.N., Alptekin, E., Eyidogan, M.: Impact of alcohol–gasoline fuel blends on the exhaust emission of an SI engine. Renew. Energy 52, 111–117 (2013)

    Google Scholar 

  11. Eyidogan, M., Ozsezen, A.N., Canakci, M., Turkcan, A.: Impact of alcohol–gasoline fuel blends on the performance and combustion characteristics of an SI engine. Fuel 89(10), 2713–2720 (2010)

    Google Scholar 

  12. Baratta, M., d'Ambrosio, S., Misul, D., Spessa, E.: Effects of H2 addition to compressed natural gas blends on cycle-to-cycle and cylinder-to-cylinder combustion variation in a spark-ignition engine. J. Eng. Gas Turbines Power 136(5) (2014)

    Google Scholar 

  13. Açıkgöz, B., Çelik, C., Soyhan, H.S., Gökalp, B., Karabağ, B.: Emission characteristics of a hydrogen–CH4 fuelled spark ignition engine. Fuel 159, 298–307 (2015)

    Article  Google Scholar 

  14. Hora, T.S., Agarwal, A.K.: Experimental study of the composition of hydrogen enriched compressed natural gas on engine performance, combustion and emission characteristics. Fuel 160, 470–478 (2015)

    Google Scholar 

  15. Mathai, R., Malhotra, R.K., Subramanian, K.A., Das, L.M.: Comparative evaluation of performance, emission, lubricant and deposit characteristics of spark ignition engine fueled with CNG and 18% hydrogen-CNG. Int. J. Hydrogen Energy 37(8), 6893–6900 (2012)

    Google Scholar 

  16. Kakaee, A.-H., Paykani, A., Ghajar, M.: The influence of fuel composition on the combustion and emissioncharacteristics of natural gas fueled engines. Renew. Sustain. Energy Rev. 38, 64–78 (2014)

    Article  Google Scholar 

  17. Bae, C., Kim, J.: Alternative fuels for internal combustion engines. Proc. Combust. Inst. 36(3), 3389–3413 (2017)

    Article  Google Scholar 

  18. Scarborough, G.A.: Alternative Fuels for Transportation (2000)

    Google Scholar 

  19. He, B.-Q., Wang, J.-X., Hao, J.-M., Yan, X.-G., Xiao, J.-H.: A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmos. Environ. 37(7), 949–957 (2003)

    Article  Google Scholar 

  20. Hu, T., Wei, Y., Liu, S., Zhou, L.: Improvement of spark-ignition (SI) engine combustion and emission during cold start, fueled with methanol/gasoline blends. Energy Fuels 21(1), 171–175 (2007)

    Article  Google Scholar 

  21. Chen, H., Yang, Lu., Zhang, P.-H., Harrison, A.: The controversial fuel methanol strategy in China and its evaluation. Energ. Strat. Rev. 4, 28–33 (2014)

    Article  Google Scholar 

  22. Vancoillie, J., Demuynck, J., Sileghem, L., Van De Ginste, M., Verhelst, S., Brabant, L., Van Hoorebeke, L.: The potential of methanol as a fuel for flex-fuel and dedicated spark-ignition engines. Appl. Energy 102, 140–149 (2013)

    Google Scholar 

  23. Zervas, E., Montagne, X., Lahaye, J.: Emissions of regulated pollutants from a spark ignition engine. Influence of fuel and air/fuel equivalence ratio. Environ. Sci. Technol. 37(14), 3232–3238 (2003)

    Article  Google Scholar 

  24. Li, Yu., Gong, J., Deng, Y., Yuan, W., Jun, Fu., Zhang, B.: Experimental comparative study on combustion, performance and emissions characteristics of methanol, ethanol and butanol in a spark ignition engine. Appl. Therm. Eng. 115, 53–63 (2017)

    Article  Google Scholar 

  25. Balki, M.K., Sayin, C., Canakci, M.: The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel 115, 901–906 (2014)

    Google Scholar 

  26. Yanju, W., Shenghua, L., Hongsong, Li., Rui, Y., Jie, L., Ying, W.: Effects of methanol/gasoline blends on a spark ignition engine performance and emissions. Energy Fuels 22(2), 1254–1259 (2008)

    Article  Google Scholar 

  27. Turner, J. W. G., Pearson, R.J., Dekker, E., Iosefa, B., Johansson, K., Ac Bergström, K.: Extending the role of alcohols as transport fuels using iso-stoichiometric ternary blends of gasoline, ethanol and methanol. Appl. Energy 102, 72–86 (2013)

    Google Scholar 

  28. Wang, X., Ge, Y., Liu, L., Peng, Z., Hao, L., Yin, H., Ding, Y., Wang, J.: Evaluation on toxic reduction and fuel economy of a gasoline direct injection-(GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios. Appl. Energy 157, 134–143 (2015)

    Article  Google Scholar 

  29. Gravalos, I., Moshou, D., Th Gialamas, Xyradakis, P., Kateris, D., Tsiropoulos, Z.: Emissions characteristics of spark ignition engine operating on lower–higher molecular mass alcohol blended gasoline fuels. Renew. Energy 50, 27–32 (2013)

    Google Scholar 

  30. Agarwal, A.K., Karare, H., Dhar, A.: Combustion, performance, emissions and particulate characterization of a methanol–gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine. Fuel Process. Technol. 121, 16–24 (2014)

    Google Scholar 

  31. Abu-Zaid, M., Badran, O., Yamin, J.: Effect of methanol addition on the performance of spark ignition engines. Energy Fuels 18(2), 312–315 (2004)

    Google Scholar 

  32. Elfasakhany, A.: Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: performance and emissions analysis. Eng. Sci. Technol. Int. J. 18(4), 713–719 (2015)

    Google Scholar 

  33. Hess, J.R., Wright, C.T., Kenney, K.L.: Cellulosic biomass feedstocks and logistics for ethanol production. Biofuels Bioprod. Bioref. Innov. Sustain. Econ. 1(3), 181–190 (2007)

    Google Scholar 

  34. Yücesu, H.S., Topgül, T., Cinar, C., Okur, M.: Effect of ethanol–gasoline blends on engine performance and exhaust emissions in different compression ratios. Appl. Therm. Eng. 26(17–18), 2272–2278 (2006)

    Google Scholar 

  35. Costa, R.C., Sodré, J.R.: Compression ratio effects on an ethanol/gasoline fuelled engine performance. Appl. Therm. Eng. 31(2–3), 278–283 (2011)

    Article  Google Scholar 

  36. Wang, C., Janssen, A., Prakash, A., Cracknell, R., Hongming, Xu.: Splash blended ethanol in a spark ignition engine—effect of RON, octane sensitivity and charge cooling. Fuel 196, 21–31 (2017)

    Article  Google Scholar 

  37. Awad, O.I., Mamat, R., Ali, O.M., Sidik, N.A.C., Yusaf, T., Kadirgama, K., Kettner, M.: Alcohol and ether as alternative fuels in spark ignition engine: a review. Renew. Sustain. Energy Rev. 82, 2586–2605 (2018)

    Google Scholar 

  38. Koç, M., Sekmen, Y., Topgül, T., Yücesu, H.S.: The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renew. Energy 34(10), 2101–2106 (2009)

    Google Scholar 

  39. Storey, J.M., Barone, T., Norman, K., Lewis, S.: Ethanol blend effects on direct injection spark-ignition gasoline vehicle particulate matter emissions. SAE Int. J. Fuels Lubr. 3(2), 650–659 (2010)

    Article  Google Scholar 

  40. Kumar, S., Singh, N., Prasad, R.: Anhydrous ethanol: a renewable source of energy. Renew. Sustain. Energy Rev. 14(7), 1830–1844 (2010)

    Article  Google Scholar 

  41. Bielaczyc, P., Woodburn, J., Klimkiewicz, D., Pajdowski, P., Szczotka, A.: An examination of the effect of ethanol–gasoline blends’ physicochemical properties on emissions from a light-duty spark ignition engine. Fuel Process. Technol. 107, 50–63 (2013)

    Article  Google Scholar 

  42. Ghazikhani, M., Hatami, M., Safari, B., Ganji, D.D.: Experimental investigation of performance improving and emissions reducing in a two stroke SI engine by using ethanol additives. Propul. Power Res. 2(4), 276–283 (2013)

    Google Scholar 

  43. Doğan, B., Erol, D., Yaman, H., Kodanli, E.: The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through energy analysis. Appl. Therm. Eng. 120, 433–443 (2017)

    Article  Google Scholar 

  44. Varol, Y., Öner, C., Öztop, H.F., Altun, Ş: Comparison of methanol, ethanol, or n-butanol blending with unleaded gasoline on exhaust emissions of an SI engine. Energy Sources, Part A: Recov. Utilization Environ. Effects 36(9), 938–948 (2014)

    Article  Google Scholar 

  45. Costa, R.C., Sodré, J.R.: Hydrous ethanol vs. gasoline-ethanol blend: engine performance and emissions. Fuel 89(2), 287–293 (2010)

    Article  Google Scholar 

  46. Chen, R.-H., Chiang, L.-B., Chen, C.-N., Lin, T.-H.: Cold-start emissions of an SI engine using ethanol–gasoline blended fuel. Appl. Therm. Eng. 31(8–9), 1463–1467 (2011)

    Article  Google Scholar 

  47. Shahad, H.A.K., Wabdan, S.K.: Effect of operating conditions on pollutants concentration emitted from a spark ignition engine fueled with gasoline bioethanol blends. J. Renew. Energy 2015 (2015)

    Google Scholar 

  48. Bahattin, C.M.: Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Appl. Therm. Eng. 28(5–6), 396–404 (2008)

    Google Scholar 

  49. Costagliola, M.A., De Simio, L., Iannaccone, S., Prati, M.V.: Combustion efficiency and engine out emissions of a SI engine fueled with alcohol/gasoline blends. Appl. Energy 111, 1162–1171 (2013)

    Article  Google Scholar 

  50. Palmer, F.H.: Vehicle performance of gasoline containing oxygenates. In: International Conference on Petroleum Based Fuels and Automotive Applications. IMECHE Conference Publications 1986–11. PAPER NO C319/86. 1986

    Google Scholar 

  51. Veziro, T.N., Barbir, F.: Hydrogen: the wonder fuel. Int. J. Hydrogen Energy 17(6), 391–404 (1992)

    Article  Google Scholar 

  52. Sopena, C., Diéguez, P.M., Sainz, D., Urroz, J.C., Guelbenzu, E., Gandía, L.M.: Conversion of a commercial spark ignition engine to run on hydrogen: performance comparison using hydrogen and gasoline. Int. J. Hydrogen Energy 35(3), 1420–1429 (2010)

    Google Scholar 

  53. Singh, S., Jain, S., Venkateswaran, P.S., Tiwari, A.K., Nouni, M.R., Pandey, J.K., Goel, S.: Hydrogen: a sustainable fuel for future of the transport sector. Renew. Sustain. Energy Rev. 51, 623–633 (2015)

    Google Scholar 

  54. Kahraman, E., Cihangir Ozcanlı, S., Ozerdem, B.: An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine. Int. J. Hydrogen Energy 32(12), 2066–2072 (2007)

    Google Scholar 

  55. White, C.M., Steeper, R.R., Lutz, A.E.: The hydrogen-fueled internal combustion engine: a technical review. Int. J. Hydrogen Energy 31(10), 1292–1305 (2006)

    Article  Google Scholar 

  56. Welch, A., Mumford, D., Munshi, S., Holbery, J., Boyer, B., Younkins, M., Jung, H.: Challenges in developing hydrogen direct injection technology for internal combustion engines. No. 2008–01–2379. SAE Technical Paper, 2008

    Google Scholar 

  57. Ganesh, R.H., Subramanian, V., Balasubramanian, V., Mallikarjuna, J.M., Ramesh, A., Sharma, R.P.: Hydrogen fueled spark ignition engine with electronically controlled manifold injection: an experimental study. Renewable Energy 33(6), 1324–1333 (2008)

    Google Scholar 

  58. Das, L.M.: Hydrogen-oxygen reaction mechanism and its implication to hydrogen engine combustion. Int. J. Hydrogen Energy 21(8), 703–715 (1996)

    Article  Google Scholar 

  59. Wallner, T., Lohse-Busch, H., Gurski, S., Duoba, M., Thiel, W., Martin, D., Korn, T.: Fuel economy and emissions evaluation of BMW Hydrogen 7 Mono-Fuel demonstration vehicles. Int. J. Hydrogen Energy 33(24), 7607–7618 (2008)

    Article  Google Scholar 

  60. Yu, X., Li, G., Yaodong, Du., Guo, Z., Shang, Z., He, F., Shen, Q., Li, D., Li, Y.: A comparative study on effects of homogeneous or stratified hydrogen on combustion and emissions of a gasoline/hydrogen SI engine. Int. J. Hydrogen Energy 44(47), 25974–25984 (2019)

    Article  Google Scholar 

  61. Yu, X., Zuo, X., Haiming, Wu., Yaodong, Du., Sun, Y., Wang, Ye.: Study on combustion and emission characteristics of a Combined Injection Engine with hydrogen direct injection. Energy Fuels 31(5), 5554–5560 (2017)

    Article  Google Scholar 

  62. Du, Y., Xiumin, Yu., Wang, J., Haiming, Wu., Dong, W., Jiaqi, Gu.: Research on combustion and emission characteristics of a lean burn gasoline engine with hydrogen direct-injection. Int. J. Hydrogen Energy 41(4), 3240–3248 (2016)

    Article  Google Scholar 

  63. Boulahlib, M.S., Medaerts, F., Abdelkrim Boukhalfa, M.: Experimental study of combustion performances and emissions of a spark ignition cogeneration engine operating in lean conditions using different fuels. Int. J. Hydrogen Energy 43(6), 3586–3596 (2018)

    Google Scholar 

  64. Karagöz, Y., Balcı, Ö., Köten, H.: Investigation of hydrogen usage on combustion characteristics and emissions of a spark ignition engine. Int. J. Hydrogen Energy 44(27), 14243–14256 (2019)

    Article  Google Scholar 

  65. Wang, S., Ji, C., Zhang, B., Liu, X.: Performance of a hydroxygen-blended gasoline engine at different hydrogen volume fractions in the hydroxygen. Int. J. Hydrogen Energy 37(17), 13209–13218 (2012)

    Google Scholar 

  66. Ji, C., Wang, S.: Effect of hydrogen addition on the idle performance of a spark ignited gasoline engine at stoichiometric condition. Int. J. Hydrogen Energy 34(8), 3546–3556 (2009)

    Article  Google Scholar 

  67. Niu, R., Xiumin, Yu., Yaodong, Du., Xie, H., Haiming, Wu., Sun, Y.: Effect of hydrogen proportion on lean burn performance of a dual fuel SI engine using hydrogen direct-injection. Fuel 186, 792–799 (2016)

    Article  Google Scholar 

  68. D'andrea, T., Henshaw, P.F., Ting, D.S.-K.: The addition of hydrogen to a gasoline-fuelled SI engine. Int. J. Hydrogen Energy 29(14), 1541–1552 (2004)

    Google Scholar 

  69. Kim, J., Chun, K.M., Song, S., Baek, H.-K., Lee, S.W.: Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios. Applied Energy 228, 1353–1361 (2018)

    Google Scholar 

  70. Ceviz, M.A., Sen, A.K., Küleri, A.K., Öner, I.V.: Engine performance, exhaust emissions, and cyclic variations in a lean-burn SI engine fueled by gasoline–hydrogen blends. Appl. Therm. Eng. 36, 314–324 (2012)

    Google Scholar 

  71. Shivaprasad, K.V., Raviteja, S., Chitragar, P., Kumar, G.N.: Experimental investigation of the effect of hydrogen addition on combustion performance and emissions characteristics of a spark ignition high speed gasoline engine. Proc. Technol. 14, 141–148 (2014)

    Google Scholar 

  72. Park, C., Kim, C., Choi, Y., Won, S., Moriyoshi, Y.: The influences of hydrogen on the performance and emission characteristics of a heavy-duty natural gas engine. Int. J. Hydrogen Energy 36(5), 3739–3745 (2011)

    Article  Google Scholar 

  73. Kahraman, N., Ceper, B., Orhan Akansu, S., Aydin, K.: Investigation of combustion characteristics and emissions in a spark-ignition engine fuelled with natural gas–hydrogen blends. Int. J. Hydrogen Energy 34(2), 1026–1034 (2009)

    Google Scholar 

  74. Malenshek, M., Olsen, D.B.: Methane number testing of alternative gaseous fuels. Fuel 88(4), 650–656 (2009)

    Article  Google Scholar 

  75. Kato, K., Igarashi, K., Masuda, M., Otsubo, K., Yasuda, A., Takeda, K., Sato, T.: Development of engine for natural gas vehicle. SAE Trans. 939–947(1999)

    Google Scholar 

  76. Kakaee, A.-H., Paykani, A.: Research and development of natural-gas fueled engines in Iran. Renew. Sustain. Energy Rev. 26, 805–821 (2013)

    Article  Google Scholar 

  77. Aslam, M.U., Masjuki, H.H., Kalam, M.A., Abdesselam, H., Mahlia, T.M.I., Amalina, M.A.: An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle. Fuel 85(5–6), 717–724 (2006)

    Article  Google Scholar 

  78. Chen, Y., Ma, J., Han, B., Zhang, P., Hua, H., Chen, H., Xin, Su.: Emissions of automobiles fueled with alternative fuels based on engine technology: a review. J. Traffic Transp. Eng. (English Edition) 5(4), 318–334 (2018)

    Article  Google Scholar 

  79. Goyal, P.: Present scenario of air quality in Delhi: a case study of CNG implementation. Atmos. Environ. 37(38), 5423–5431 (2003)

    Article  Google Scholar 

  80. Diéguez, P.M., Urroz, J.C., Marcelino-Sádaba, S., Pérez-Ezcurdia, A., Benito-Amurrio, M., Sáinz, D., Gandía, L.M.: Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen–methane mixtures. Appl. Energy 113, 1068–1076 (2014)

    Article  Google Scholar 

  81. Liu, Y., Yeom, J.K., Chung, S.S.: An experimental study on the effects of impingement-walls on the spray and combustion characteristics of SIDI CNG. J. Mech. Sci. Technol. 26(8), 2239–2246 (2012)

    Google Scholar 

  82. Alagumalai, A.: Internal combustion engines: progress and prospects. Renew. Sustain. Energy Rev. 38, 561–571 (2014)

    Article  Google Scholar 

  83. Jahirul, M.I., Masjuki, H.H., Saidur, R., Kalam, M.A., Jayed, M.H., Wazed, M.A.: Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine. Appl. Therm. Eng. 30(14–15), 2219–2226 (2010)

    Google Scholar 

  84. NGV (Natural gas vehicle) knowledge base statics (2019). http://www.iangv.org/current-ngv-stats/. Accessed 05 Mar 2020

  85. Tabar, A.R., Hamidi, A.A., Ghadamian, H.: Experimental investigation of CNG and gasoline fuels combination on a 1.7 L bi-fuel turbocharged engine. Int. J. Energy Environ. Eng. 8(1), 37–45 (2017)

    Google Scholar 

  86. Chen, H., He, J., Zhong, X.: Engine combustion and emission fuelled with natural gas: a review. J. Energy Inst. 92(4), 1123–1136 (2019)

    Article  Google Scholar 

  87. Mehrnoosh, D., Asghar, H.A., Asghar, M.A.: Thermodynamic model for prediction of performance and emission characteristics of SI engine fuelled by gasoline and natural gas with experimental verification. J. Mech. Sci. Technol. 26(7), 2213–2225 (2012)

    Google Scholar 

  88. Duc, K.N., Duy, V.N., Hoang-Dinh, L., Viet, T.N., Le-Anh, T.: Performance and emission characteristics of a port fuel injected, spark ignition engine fueled by compressed natural gas. Sustain. Energy Technol. Assessm. 31, 383–389 (2019)

    Google Scholar 

  89. Putrasari, Y., Praptijanto, A., Nur, A., Wahono, B., Santoso, W.B.: Evaluation of performance and emission of SI engine fuelled with CNG at low and high load condition. Energy Proc. 68, 147–156 (2015)

    Google Scholar 

  90. Lather, R.S., Das, L.M.: Performance and emission assessment of a multi-cylinder SI engine using CNG & HCNG as fuels. Int. J. Hydrogen Energy 44(38), 21181–2119 (2019)

    Google Scholar 

  91. Aljamali, S., Abdullah, S., Wan Mahmood, W.M.F., Ali, Y.: Effect of fuel injection timings on performance and emissions of stratified combustion CNGDI engine. Appl. Therm. Eng. 109, 619–629 (2016)

    Google Scholar 

  92. Yontar, A.A., Doğu, Y.: Investigation of the effects of gasoline and CNG fuels on a dual sequential ignition engine at low and high load conditions. Fuel 232, 114–123 (2018)

    Google Scholar 

  93. Subramanian, M.: Performance Analysis of 18% HCNG fuel on Heavy Duty Engine (No. 2014–01–1453). SAE Technical Paper

    Google Scholar 

  94. Movahed, M.M., Tabrizi, H.B., Mirsalim, M.: Experimental investigation of the concomitant injection of gasoline and CNG in a turbocharged spark ignition engine. Energy Convers. Manage. 80, 126–136 (2014)

    Google Scholar 

  95. Ramasamy, D., Goh, C.Y., Kadirgama, K., Benedict, F., Noor, M.M., Najafi, G., Carlucci, A.P.: Engine performance, exhaust emission and combustion analysis of a 4-stroke spark ignited engine using dual fuel injection. Fuel 207, 719–728 (2017)

    Article  Google Scholar 

  96. Bahadori, A.: Natural gas processing: technology and engineering design. Gulf Professional Publishing (2014)

    Google Scholar 

  97. Morgan, T., Ocal, U.: Autogas Incentive Policies. World LP Gas Association: Neuilly-sur-Seine, France (2012)

    Google Scholar 

  98. Sulaiman, M.Y., Ra Ayob, M., Meran, I.: Performance of single cylinder spark ignition engine fueled by LPG. Proc. Eng. 53, 579–585 (2013)

    Google Scholar 

  99. Yousufuddin, S., Mehdi, S.N.: Performance and emission characteristics of LPG-fuelled variable compression ratio SI engine. Turk. J. Eng. Environ. Sci. 32(1), 7–12 (2008)

    Google Scholar 

  100. Pradeep, V., Bakshi, S.: Ramesh, A.: Direct injection of gaseous LPG in a two-stroke SI engine for improved performance. Appl. Therm. Eng. 89, 738–747 (2015)

    Google Scholar 

  101. Çinar, C., Şahin, F., Can, Ö., Uyumaz, A.: A comparison of performance and exhaust emissions with different valve lift profiles between gasoline and LPG fuels in a SI engine. Appl. Therm. Eng. 107, 1261–1268 (2016)

    Article  Google Scholar 

  102. Tukiman, M.M., Osman, S.A., Fawzi, M., Mustaffa, N., Madon, R.H.: Effect of performance and exhaust emission using liquid phase LPG sequential ınjection as an alternative fuel in spark ıgnition engine. Int. J. Integr. Eng. 10(8) (2018)

    Google Scholar 

  103. Alexander, J., Porpatham, E., Krishnaiah, R., Devunuri, S., Jayapaul, P.B., Wu, Z., Sumathy, S.: Experimental Investigations on the Effect of Alcohol Addition on Performance, Emission and Combustion Characteristics of LPG Fuelled Lean Burn Spark Ignition Engine. No. 2019-26-0085. SAE Technical Paper (2019)

    Google Scholar 

  104. Snelgrove, D.G., Dupont, P., Bonetto, R.: An investigation into the influence of LPG (autogas) composition on the exhaust emissions and fuel consumption of 3 bi-fuelled renault vehicles. No. 961170. SAE Technical Paper (1996)

    Google Scholar 

  105. Akansu, S.O., Bayrak, M.: Experimental study on a spark ignition engine fueled by CH4/H2 (70/30) and LPG. Int. J. Hydrogen Energy 36(15), 9260–9266 (2011)

    Google Scholar 

  106. Gumus, M.: Effects of volumetric efficiency on the performance and emissions characteristics of a dual fueled (gasoline and LPG) spark ignition engine. Fuel Process. Technol. 92(10), 1862–1867 (2011)

    Article  Google Scholar 

  107. Pecqueur, M., Ceustermans, K., Huyskens, P., Savvidis, D.: Emissions generated from a Suzuki Liane running on unleaded gasoline and LPG under the same load conditions. No. 2008–01–2637. SAE Technical Paper (2008)

    Google Scholar 

  108. Bayraktar, H., Durgun, O.: Investigating the effects of LPG on spark ignition engine combustion and performance. Energy Convers. Manage. 46(13–14), 2317–2333 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, N., Arora, B.B., Maji, S. (2022). Influence of Alternative Fuels on Exhaust Emissions of IC Engine: A Review. In: Khosla, A., Aggarwal, M. (eds) Renewable Energy Optimization, Planning and Control. Studies in Infrastructure and Control. Springer, Singapore. https://doi.org/10.1007/978-981-16-4663-8_2

Download citation

Publish with us

Policies and ethics