Skip to main content

Spectrogram as an Emerging Tool in ECG Signal Processing

  • Conference paper
  • First Online:
Recent Advances in Manufacturing, Automation, Design and Energy Technologies

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

These days signal processing has the great importance in extracting important pathological attributes of the subject (patient). This paper covers important aspects of Electrocardiogram (ECG) signal analysis by proposing emerging tool. The degree of morphological beat-to-beat variability has been examined using a spectrogram technique on real-time ECG datasets. It provides time varying spectral density description of the ECG signal. Out of 49,181 total beats, the proposed technique presents duplicity (D) of 0.4% and detection rate (DR) of 99.48%. Some of the possible future directions, that the research work carried out in this paper can take, are also outlined in conclusion section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heart structure. https://www.online-sciences.com/tag/heart-structure/. Last accessed 09 Sept 2020

  2. Singh, R.S., Saini, B.S., Sunkaria, R.K.: Times varying spectral coherence investigation of cardiovascular signals based on energy concentration in healthy young and elderly subjects by the adaptive continuous Morlet wavelet transform. IRBM 39(1), 54–68 (2018)

    Article  Google Scholar 

  3. Singh, D., Saini, B.S., Kumar, V.: Heart rate variability—a bibliographical survey. IETE J. Res. 54(3), 209–216 (2008)

    Article  Google Scholar 

  4. Zidelmal, Z.: QRS detection based on wavelet coefficients. Comp. Met. Prog. Biomed. 107(3), 490–496 (2012)

    Article  Google Scholar 

  5. Luz, E.J.S., Schwartz, W.R., Chávez, G.C., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. J. Com. Met. Prog. Biom. 127, 144–164 (2016)

    Article  Google Scholar 

  6. Singh, R.S., Saini, B.S., Sunkaria, R.K.: Arrhythmia detection based on time–frequency features of heart rate variability and back-propagation neural network. Iran J. Comput. Sci. (2019). https://doi.org/10.1007/s42044-019-00042-1

  7. Chakraborty, M., Ghosh, D.: Quantitative assessment of arrhythmia using non-linear approach: a non-invasive prognostic tool. J. Inst. Eng. India Ser. B. (2017). https://doi.org/10.1007/s40031-017-0307-3

  8. Jung, W.H., Lee, S.G.: An arrhythmia classification method in utilizing the weighted KNN and the fitness rule. IRBM (2017). https://doi.org/10.1016/j.irbm.2017.04.002

    Article  Google Scholar 

  9. Rai, H.M., Trivedi, A., Chatterjee, K., Shukla, S.: R-peak detection using Daubechies wavelet and ECG signal classification using radial basis function neural network. J. Inst. Eng. India Ser. B. 95(1), 63–71 (2014)

    Article  Google Scholar 

  10. Halder, B., Mitra, S., Mitra, M.: Classification of complete myocardial infarction using rule-based rough set method and rough set explorer system. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1588175

    Article  Google Scholar 

  11. Sheetal, A., Singh, H., Kaur, A.: QRS detection of ECG signal using hybrid derivative and MaMeMi filter by effectively eliminating the baseline wander. Analog Integr. Circ. Sig. Process. 98(1), 1–9 (2019)

    Article  Google Scholar 

  12. Gupta, V., Mittal, M.: Respiratory signal analysis using PCA, FFT and ARTFA. In: Proceeding of the 2016 International Conference on Electrical Power and Energy Systems (ICEPES), December 14–16, pp. 221–225. India (2016)

    Google Scholar 

  13. Gupta, V., Kanungo, A., Kumar, P., Sharma, A.K., Gupta, A.: Auto-regressive time frequency analysis (ARTFA) of electrocardiogram (ECG) signal. Int. J. Appl. Eng. Res. 13(6), 133–138 (2018)

    Google Scholar 

  14. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ECG signal. Analog Integr. Circ. Sig. Process. (2019). https://doi.org/10.1007/s10470-019-01556-1

    Article  Google Scholar 

  15. Nguomkam, A., Kengne, J.: A minimal three-term chaotic flow with coexisting routes to chaos, multiple solutions, and its analog circuit realization. Analog Integr. Circ. Sig. Process. (2019). https://doi.org/10.1007/s10470-019-01436-8

  16. Gupta, V., Mittal, M.: Electrocardiogram signals interpretation using Chaos theory. J. Adv. Res. Dyn. Con. Sys. 9, 2392–2397 (2018)

    Google Scholar 

  17. Gupta, V., Mittal, M.: A comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis. IRBM 40(3), 145–156 (2019)

    Article  Google Scholar 

  18. Kora, P., Krishna, K.S.R.: ECG based heart arrhythmia detection using wavelet coherence and bat algorithm. Sens. Imag. 17, 1–16 (2016)

    Article  Google Scholar 

  19. Xingyuan, W., Juan, M.: Wavelet-based hybrid ECG compression technique. Analog Integr. Circ. Sig. Process. 59(3), 301–308 (2009)

    Article  Google Scholar 

  20. Rajankar, S.O., Talbar, S.N.: An electrocardiogram signal compression techniques: a comprehensive review. Analog Integr. Circ. Sig. Process. 98(1), 59–74 (2019)

    Article  Google Scholar 

  21. Mehta, S.S., Lingayat, N.S.: SVM based QRS detection in electrocardiogram using signal entropy. IETE J. Res. 54(3), 231–240 (2008)

    Article  Google Scholar 

  22. Mehta, S.S., Shete, D.A., Lingayat, N.S., Chouhan, V.S.: K-means algorithm for the detection and delineation of QRS-complexes in electrocardiogram. IRBM 31, 48–54 (2010)

    Article  Google Scholar 

  23. Mehta, S.S., Lingayat, N.S.: SVM-based algorithm for recognition of QRS complexes in electrocardiogram. IRBM 29, 310–317 (2008)

    Article  Google Scholar 

  24. Gupta, V., Mittal, M.: Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis. J. Inst. Eng. (India): Ser. B (2020). https://doi.org/10.1007/s40031-020-00488-z

  25. Gupta, V., Mittal, M.: QRS complex detection using STFT, Chaos analysis, and PCA in standard and real-time ECG databases. J. Inst. Eng. India Ser. B 100(5), 489–497 (2019)

    Article  Google Scholar 

  26. Gupta, V., Mittal, M.: A novel method of cardiac arrhythmia detection in electrocardiogram signal. Int. J. Med. Eng. Inf. 12(5), 489–499 (2019)

    Google Scholar 

  27. Gupta, V., Mittal, M., Mittal, V.: An efficient AR modeling based electrocardiogram signal analysis for health informatics. Int. J. Med. Eng. Inf. (IJMEI). In press (2022)

    Google Scholar 

  28. Das, M., Ari, S.: Analysis of ECG signal denoising method based on S-transform. IRBM 34(6), 362–370 (2013)

    Article  Google Scholar 

  29. Emresoy, M.K., Jaroudi, A.E.: Sig. Process. 64, 157–165 (1998)

    Article  Google Scholar 

  30. Sallo, Z.G.: Efficient ECG signal parameters extraction using multiresolution analysis. In: Proceedings of the International Conference on Advancements of Medicine and Health Care Through Technology, Romania (2009)

    Google Scholar 

  31. Gupta, V., et al.: ECG signal analysis using CWT, spectrogram and autoregressive technique. Iran J. Comput. Sci. In press (2021)

    Google Scholar 

  32. Mortezaee, M., Mortezaie, Z., Abolghasemi, V.: An improved SSA-based technique for EMG removal from ECG. IRBM 40, 62–68 (2019)

    Article  Google Scholar 

  33. Chandra, S., Sharma, A., Singh, G.K.: Computationally efficient cosine modulated filter bank design for ECG signal compression. IRBM (2019). https://doi.org/10.1016/j.irbm.2019.06.002

    Article  Google Scholar 

  34. Mehta, S.S., Lingayat, N.S.: Development of SVM based ECG pattern recognition technique. IETE J. Res. 54(1), 5–11 (2008)

    Article  Google Scholar 

  35. Marwaha, P., Sunkaria, R.K.: Cardiac variability time-series analysis by sample entropy and multiscale entropy. Int. J. Med. Eng. Inf. 7(1), 1–14 (2015)

    Google Scholar 

  36. Amar, D., Abboud, S.: P-wave morphology in focal atrial tachycardia using a 3D numerical model of the heart. Int. J. Med. Eng. Inf. 8(3), 263–274 (2016)

    Google Scholar 

  37. Salman, M.N., Rao, P.T., Rahman, M.Z.U.: Cardiac signal enhancement using normalised variable step algorithm for remote healthcare monitoring systems. Int. J. Med. Eng. Inf. 9(2), 145–161 (2017)

    Google Scholar 

  38. Murthy, H.S.N., Meenakshi, M.: Novel and efficient algorithms for early detection of myocardial ischemia. Int. J. Med. Eng. Inf. 9(4), 351–372 (2017)

    Google Scholar 

  39. Rawal, K., Saini, B.S., Saini, I.: Effect of age and postural related changes on cardiac autonomic function in the pre-menopausal and post-menopausal women. Int. J. Med. Eng. Inf. 9(4), 299–315 (2017)

    Google Scholar 

  40. Gupta, V., et al.: Performance evaluation of various pre-processing techniques for R-peak detection in ECG signal. IETE J. Res. (2020). https://doi.org/10.1080/03772063.2020.1756473

    Article  Google Scholar 

  41. Gramatikov, B., Georgiev, I.: Wavelets as alternative to short-time Fourier transform in signal-averaged electrocardiography. Med. Biolo. Eng. Comput. 33(3), 482–487 (1995)

    Article  Google Scholar 

  42. Wyse, L.: Audio spectrogram representations for processing with convolutional neural networks. In: Proceeding of the First International Workshop on Deep Learning and Music Joint with IJCNN, vol. 1(1), pp. 37–41. Anchorage, US (2017)

    Google Scholar 

  43. Rohini, R., et al.: A new paradigm for plotting spectrogram. J. Inf. Syst. Commun. 3, 158–161 (2012)

    Google Scholar 

  44. Ranjan, R., Jindal, N., Singh, A.K.: Fractional S-transform and its properties: a comprehensive survey. Wirel. Pers. Commun. 113, 2519–2541 (2020)

    Article  Google Scholar 

  45. Speaker Control-Time Frequency Analysis (TFA). https://www.klippel.de/products/rd-system/modules/tfa-time-frequency-analysis.html. Last accessed 09 Sept 2020

  46. Sejdic, E., Djurovic, I., Jiang, J., Stankovic, L.J.: Time–frequency based feature extraction and classification: considering energy concentration as a feature using Stockwell transform and related approaches, vol.1, 1st ed. VDM Verlag Publishing, Germany (2009)

    Google Scholar 

  47. Gupta, V., Mittal, M.: ECG signal analysis: past, present and future. In: Proceeding of the 8th IEEE Power India International Conference (PIICON), December 10–12, 1–6. NIT Kurukshetra, Haryana, India (2018)

    Google Scholar 

  48. Gupta, V., Mittal, M.: KNN and PCA classifier with autoregressive modelling during different ECG signal interpretation. Procedia Comput. Sci. 125, 18–24 (2018)

    Article  Google Scholar 

  49. Gupta, V., Mittal, M.: Efficient R-peak detection in electrocardiogram signal based on features extracted using Hilbert transform and Burg method. J. Inst. Eng. India Ser. B. (2020). https://doi.org/10.1007/s40031-020-00423-2

    Article  Google Scholar 

  50. Kaur, I., Rajni, R., Marwaha, A.: ECG signal analysis and arrhythmia detection using wavelet transform. J. Inst. Eng. India Ser. B. 97(4), 499–507 (2016)

    Article  Google Scholar 

  51. Rahman, A., et al.: A statistical designing approach to MATLAB based functions for the ECG signal pre-processing. Iran J. Comput. Sci. (2019). https://doi.org/10.1007/s42044-019-00035-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, V., Mittal, M., Mittal, V., Saxena, N.K. (2022). Spectrogram as an Emerging Tool in ECG Signal Processing. In: Natarajan, S.K., Prakash, R., Sankaranarayanasamy, K. (eds) Recent Advances in Manufacturing, Automation, Design and Energy Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-4222-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4222-7_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4221-0

  • Online ISBN: 978-981-16-4222-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics