Skip to main content

Recent Advances in the Application of Biotechnology for Improving the Production of Secondary Metabolites from Quinoa

  • Chapter
  • First Online:
Biology and Biotechnology of Quinoa

Abstract

Quinoa (Chenopodium quinoa) has been identified as a unique plant with several benefits that could solve several challenges facing mankind. The application of some recent advances in biotechnological techniques could help toward enhancing the production of important metabolites and nutritional attributes and improve the quality of several products that could be derived from quinoa. It is a source of excellent antioxidant activity along with high values of amino acids, carbohydrates, fatty acids, minerals, phenolic compounds, and saponins. Some of these metabolites possess biotechnological relevance in the production of pharmaceutical, insecticidal, biopesticidal, and nematocidal products. This chapter provides detailed information on the utilization of in vitro tissue culturing for effective production of essential metabolites, while the application of somatic embryogenesis methodology has been identified as significant instrument for effective production of virus-free plants. Furthermore, detailed information on the application of metabolomics together with hyphenated analytical and spectroscopic methodology which included gas chromatography coupled to mass spectrometry, liquid chromatography, and nuclear magnetic resonance spectrometry is provided. Relevance of synthetic biology, informatics, computational biology, and bioinformatics together with nanotechnology on how they could improve some bioactive constituents derived from quinoa plants was also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aasamaa K, Sõber A (2011) Responses of stomatal conductance to simultaneous changes in two environmental factors. Tree Physiol 31:855–864. https://doi.org/10.1093/treephy/tpr078

    Article  PubMed  Google Scholar 

  • Abou-Zaid MM, Helson BV, Nozzolillo C, Arnason JT (2001) Ethyl m-digallate from red maple, Acer rubrum L., as the major resistance factor to forest tent caterpillar, Malacosoma disstria Hbn. J Chem Ecol 27:2517–2527

    CAS  PubMed  Google Scholar 

  • Abubaka Y, Tijjani H, Egbuna C, Adetunji CO, Kala S, Kryeziu T, Ifemeje JC, Partick-Iwuanuyanwu KC (2019) Pesticides, history and classification. In: Natural remedy for pest, diseases and weed control. Academic Press, Cambridge, MA, pp 1–18

    Google Scholar 

  • Adel MM, Schnal F, Jurzysta M (2000) Effects of alfalfa saponins on the moth Spodoptera littoralis. J Chem Ecol 26:1065–1078

    CAS  Google Scholar 

  • Adetunji CO (2008) Antibacterial activities and preliminary phytochemical screening of Vernonia amygdalina and Aloe vera (M.Sc. Project)

    Google Scholar 

  • Adetunji CO, Olaleye OO (2011) Phytochemical screening and antimicrobial activity of the plant extracts of Vitellaria paradoxa against selected microbes. J Res Biosci 7(1):64–69

    Google Scholar 

  • Adetunji CO, Ugbenyen AM (2019) Mechanism of action of nanopesticide derived from microorganism for the alleviation of abiotic and biotic stress affecting crop productivity. In Book: nanotechnology for agriculture: crop production & protection. https://doi.org/10.1007/978-981-32-9374-8_7

  • Adetunji CO, Olaleye OO, Adetunji JB, Oyebanji AO, Olaleye OO, Olatilewa MO (2011a) Studies on the antimicrobial properties and phytochemical screening of methanolic extracts of Bambusa vulgaris leaf. Int J Biochem 3(1):21–26

    Google Scholar 

  • Adetunji CO, Kolawole OM, Afolayan SS, Olaleye OO, Umanah JT, Anjorin E (2011b) Preliminary phytochemical and antibacterial properties of Pseudocedrela kotschyi: a potential medicinal plant. J Res Biosci African J Biosci 4(1):47–50. ISSN 2141-0100

    Google Scholar 

  • Adetunji CO, Arowora KA, Afolayan SS, Olaleye OO, Olatilewa MO (2011c) Evaluation of antibacterial activity of leaf extract of Chromolaena odorata. Sci Focus 16(1):1–6. ISSN 1598-7026. www.sciencefocusngr.org. Published by Faculty of Pure and Applied Sciences, LAUTECH

    Google Scholar 

  • Adetunji CO, Fawole OB, Oloke JK, Adetunji JB, Makanjuola OR (2012) Effect of edible coatings from aloe vera gel on Citrus sinensis during ambient storage. J Agric Res Dev 11(1):77–84. ISSN 1596-5511

    Google Scholar 

  • Adetunji CO, Fawole OB, Arowora KA, Nwaubani SI, Oloke JK, Adepoju AO, Adetunji JB, Ajani AO (2013a) Performance of edible coatings from carboxymethylcellulose(CMC) and corn starch(CS) incorporated with Moringa oleifera extract on Citrus sinensis stored at ambient temperature. Agrosearch 13(1):77–85

    Google Scholar 

  • Adetunji CO, Fawole OB, Arowora KA, Nwaubani SI, Ajayi ES, Oloke JK, Aina JA, Adetunji JB, Ajani AO (2013b) Postharvest quality and safety maintenance of the physical properties of Daucus carota L. fruits by Neem oil and Moringa oil treatment: a new edible coatings. Agrosearch 13(1):131–141

    Google Scholar 

  • Adetunji CO, Ogundare MO, Ogunkunle ATJ, Kolawole OM, Adetunji JB (2014) Effects of edible coatings from xanthum gum produced from Xanthomonas campestris pammel on the shelf life of Carica papaya linn fruits. Asian J Agric Biol 2(1):8–13

    Google Scholar 

  • Adetunji CO, Kola OJ, Gandham P, Benjamin AO (2017) Environmental influence of cultural medium on bioherbicidal activities of Pseudomonas aeruginosa C1501 on mono and dico weeds. Polish J Nat Sci 32(4):659–670

    Google Scholar 

  • Adetunji CO, Oloke JK, Mishra P, Oluyori AP, Jolly RS, Bello OM (2018a) Mellein, a dihydroisocoumarin with bioherbicidal Activity from a New Strain of Lasiodiplodia pseudotheobromae C1136. Beni-Suef Univ J Basic Appl Sci. https://doi.org/10.1016/j.bjbas.2018.06.001. Published by Elsevier Limited

  • Adetunji CO, Paomipem P, Neera BS (2018b) Production of ecofriendly biofertilizers produced from crude and immobilized enzymes from Bacillus subtilis CH008 and their effect on the growth of Solanum lycopersicum. Plant Arch 18(2):1455–1462

    Google Scholar 

  • Adetunji CO, Oluseun AI, Kola OJ, Akpor OB (2018c) Production of phytotoxic metabolites with bioherbicidal activities from Lasiodiplodia pseudotheobromae produced on different agricultural wastes using solid-state fermentation. Iran J Sci Technol Trans Sci 42(3):1163–1175. https://doi.org/10.1007/s40995-017-0369-8

    Article  Google Scholar 

  • Adetunji CO, Oluseun AI, Sunmola AI, Bunmi AJ, Sunday AE (2018d) Prolonging the shelf-life of ‘Agege Sweet’ Orange with chitosan-rhamnolipid coating. Hortic Environ Biotechnol 59(5):687–697. https://doi.org/10.1007/s13580-018-0083-2

    Article  CAS  Google Scholar 

  • Adetunji CO, Oloke JK, Bello OM, Pradeep M, Jolly RS (2019a) Isolation, structural elucidation and bioherbicidal activity of an eco-friendly bioactive 2-(hydroxymethyl) phenol, from Pseudomonas aeruginosa (C1501) and its ecotoxicological evaluation on soil. Environ Technol Innov 13:304–317. https://doi.org/10.1016/j.eti.2018.12.006. Published by Elsevier Limited. Index in Scopus

  • Adetunji CO, Panpatte D, Bello OM, Adekoya MA (2019b) Application of nanoengineered metabolites from beneficial and eco-friendly microorganisms as a biological control agents for plant pests and pathogens. In Book: nanotechnology for agriculture: crop production & protection. https://doi.org/10.1007/978-981-32-9374-8_13

  • Adetunji CO, Sunmola AI, Bunmi AJ (2019c) Effect of Rhamnolipid-Aloe vera gel edible coating on post-harvest control of rot and quality parameters of ‘Agege Sweet’ Orange. Agric Nat Resour 53(2019):364–372

    Google Scholar 

  • Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd). Environ Exp Bot 92:43–54

    CAS  Google Scholar 

  • Agerbirk N, Olsen CE, Bibby BM, Frandsen HO, Brown LD, Nielsen JK, Renwick JAA (2003) A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J Chem Ecol 29:1417–1433

    CAS  PubMed  Google Scholar 

  • Antúnez de Mayolo SE (1981) La nutrición en el antiguno Perú Lima: BancoCenral de Reserva de Peru. Oficina Numismatica–BCRP, Imp, 187p

    Google Scholar 

  • Araujo-Farro PC, Podadera G, Sobral PJA, Menegalli FC (2010) Development of films based on quinoa (Chenopodium quinoa Willd.) starch. Carbohydr Polym 81:839–848

    CAS  Google Scholar 

  • Arneja I, Tanwar B, Chauhan A (2015) Nutritional composition and health benefits of golden grain of 21 st century, quinoa (Chenopodium quinoa Willd.): a review. Pak J Nutr 14:1034–1040

    CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    CAS  Google Scholar 

  • Avato P, Bucci R, Tava A, Vitali C, Rosato A, Bialy Z, Jurzysta M (2006) Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship. Phytother Res 20:454–457

    CAS  PubMed  Google Scholar 

  • Bai CZ, Feng ML, Hao XL, Zhao ZJ, Li YY, Wang ZH (2015) Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo. Mol Med Rep 12:1777–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartwal A, Mall R, Lohani P, Guru S, Arora S (2013) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32:216–232

    CAS  Google Scholar 

  • Bastidas E, Roura R, Rizzolo D, Massanés T, Gomis R (2016) Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: an integrative review. J Nutr Food Sci 6:3. https://doi.org/10.4172/2155-9600.1000497

    Article  CAS  Google Scholar 

  • Basu S, Gangopadhyay G, Mukherjee B (2002) Salt tolerance in rice in vitro: implication of accumulation of Na, K and proline. Plant Cell Tissue Org Cult 69:55–64

    CAS  Google Scholar 

  • Bhargava A, Srivastava S (2013) Quinoa: botany, production and uses. CABI

    Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa—an Indian perspective. Ind Crop Prod 23:73–87

    CAS  Google Scholar 

  • Borsani O, Valpuesta M, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Org Cult 73:101–115

    CAS  Google Scholar 

  • Brend Y, Galili L, Badani H, Hovav R, Galili S (2012) Total phenolic content and antioxidant activity of red and yellow quinoa (Chenopodium quinoa Willd.) seeds as affected by baking and cooking conditions. Food Nutr Sci 3:1150–1155

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. Wiley

    Google Scholar 

  • Burnouf-Radosevich M, Delfel NE (1984) High-performance liquid chromatography of oleanane-type triterpenes. J Chromatogr A 292:403–409

    CAS  Google Scholar 

  • Burnouf-Radosevich M, Paupardin C (1985) Vegetative propagation of Chenopodium quinoa by shoot tip culture. Am J Bot 72(2):278–283. https://doi.org/10.1002/j.1537-2197.1985.tb08292.x

    Article  Google Scholar 

  • Carciochi RA, Manrique GD, Dimitrov K (2014) Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.)

    Google Scholar 

  • Carmona V, Martín-Aragon S, Goldberg J, Schubert D, Bermejo-Bescós P (2019) Several targets involved in Alzheimer’s disease amyloidogenesis are affected by morin and isoquercitrin. Nutr Neurosci. Dordrecht, pp 485–499

    Google Scholar 

  • Carrasco E, Soto J (2010) “Importance of Andean grains.” Andean grains, Progress, achievements and experiences in quinoa, amaranth canahua and Bolivia. Bioversity International, Rome

    Google Scholar 

  • Celik OF, Tuncil YE (2020) Antioxidant activity, total phenolic and saponin contents of quinoa seeds having different hull colours as affected by washing process. Erzincan Univ J Sci Technol 13:11–24

    Google Scholar 

  • Chaieb I (2010) Saponins as insecticides: a review. Tunis J Plant Prot 5:39–50

    Google Scholar 

  • Chaves MM, Oliveira M (2004) Mechanisms underlying plant resilience to water deficit: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    CAS  PubMed  Google Scholar 

  • Cherian S, Reddy MP (2002) Micropropagation of the halophyte Suaeda nudiflora Moq. Through axillary bud culture. Ind J Plant Physiol 71:40–43

    Google Scholar 

  • Cherian S, Reddy MP (2003) Evaluation of NaCl tolerance in the callus “Improvement of wheat abiotic stress resistance via genetic transformation”. Acta Biol Szegedienis 46:5–7

    Google Scholar 

  • Cho JY, Moon JH, Seong KY, Park KH (1998) Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci Biotechnol Biochem 62:2273–2276

    CAS  PubMed  Google Scholar 

  • Choo MK, Park EK, Yoon HK, Kim DH (2002) Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora. Biol Pharm Bull 25:1328–1332

    CAS  PubMed  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cincin ZB, Unlu M, Kiran B, Bireller ES, Baran Y, Cakmakoglu B (2015) Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cell Oncol 38:195–3204

    Google Scholar 

  • Claros M, Angulo V, Gutiérrez C, Oruño N, Cocozza C et al (2010) Primeros reportes de aislamientos de bacterias y hongos endófitos en el cultivo de la quinua (Chenopodium quinoa Willd.) en Bolivia Third World Quinoa Congress Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of Quinoa (Chenopodium quinoa Willd.) grown in a Mediterranean-type agroecosystem. J Agron Crop Sci 199:229–240

    Google Scholar 

  • Comai S, Bertazzo A, Bailoni L, Zancato M, Costa CVL, Allegri G (2007) The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours. Food Chem 100:1350–1355

    CAS  Google Scholar 

  • Compton M, Gray DJ, Gaba VP (2004) Use of tissue culture and biotechnology for the genetic improvement of watermelon. Plant Cell Tissue Org Cult 77:231–243

    CAS  Google Scholar 

  • Cosac AC, Teodorescu G, Buord S, Isac V, Nicola C (2016) Exploration of regeneration potential of extinct plants starting from old seeds, by in vitro technology. The annals of “valahia” university of targoviste. https://doi.org/10.1515/agr-2016-0013

  • Cushnie TT, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44:377–386

    CAS  PubMed  Google Scholar 

  • Davidson EA (2012) Representative concentration pathways and mitigation of nitrous oxide. IOP Sci Environ Res Lett 7:024005. https://doi.org/10.1088/1748-9326/7/2/024005

    Article  CAS  Google Scholar 

  • De Carvalho FG, Ovídio PP, Padovan GJ, Jordao Junior AA, Marchini JS, Navarro AM (2014) Metabolic parameters of postmenopausal women after quinoa or corn flakes intake–a prospective and double-blind study. Int J Food Sci Nutr 65:380–385

    PubMed  Google Scholar 

  • De Geyter E, Geelen D, Smagghe G (2007a) First results on the insecticidal action of saponins. Commun Agric Appl Biol Sci 72:645–648

    PubMed  Google Scholar 

  • De Geyter E, Lambert E, Geelen D, Smagghe G (2007b) Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol 1:96–105

    Google Scholar 

  • De Simone F, Dini A, Pizza C, Saturnino P, Schettino O (1990) Two flavonol glycosides from Chenopodium quinoa. Phytochemistry 29:3690–3692

    PubMed  Google Scholar 

  • De Vos AC, Broekman R, de Almeida Guerra CC, Almeida Guerra C, van Rijsselberghe M, Rozema J (2013) Developing and testing new halophyte crops: a case study of salt tolerance of two species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officinalis. Environ Exp Bot 92:154–164

    Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. https://doi.org/10.1007/978-81-322-1689-6

  • Delatorre-Herrera J, Delfino I, Salinas C, Silva H, Cardemil L (2010) Irrigation restriction effects on water use efficiency and osmotic adjustment in Aloe Vera plants (Aloe barbadensis Miller). Agric Water Manag 97:1564–1570. https://doi.org/10.1016/j.agwat.2010.05.008

    Article  Google Scholar 

  • Dembitsky V, Shkrob I, Hanus LO (2008) Ascaridole and related peroxides from the genus Chenopodium. Biomed Pap Med Fac Palacky Olomouc Czech Repub 152:209–215

    CAS  Google Scholar 

  • Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339

    CAS  PubMed  Google Scholar 

  • Dini I, Tenore GC, Dini A (2010) Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT-Food Sci Technol 43:447–451

    CAS  Google Scholar 

  • Duke SO, Cantrell CL, Meepagala KM, Wedge DE, Tabanca N, Schrader KK (2010) Natural toxins for use in pest management. Toxins 2:1943–1962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisa S, Koyro HW, Kogel KH, Imani J (2005) Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa. Plant Cell Tissue Org Cult 81:243–246

    Google Scholar 

  • Erban A, Fehrle I, Martinez-Seidel F, Brigante F, LuciniMás A, Baroni V, Wunderlin D, Kopka J (2019) Discovery of food identity markers by metabolomics and machine learning technology. Sci Rep 9697

    Google Scholar 

  • Escuredo O, González Martín MI, Wells Moncada G, Fischer S, Hernández Hierro JM (2014) Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. J Cereal Sci 60:67–74

    CAS  Google Scholar 

  • Estrada A, Li B, Laarveld B (1998) Adjuvant action of Chenopodium quinoa saponins on the induction of antibody responses to intragastric and intranasal administered antigens in mice. Comp Immunol Microbiol Infect Dis 21:225–236

    CAS  PubMed  Google Scholar 

  • FAO (2011) Quinoa: an ancient crop to contribute to world food security. 55 p. www.fao.org

  • Fernández J, Moreno F, Girón I, Blázquez O (1997) Plant Soil 190:179–192

    Google Scholar 

  • Fghire R, Anaya F, Ali OI, Benlhabib O, Ragab R, Wahbi S (2015) Chil J Agric Res 75:2. https://doi.org/10.4067/S0718-58392015000200006

    Article  Google Scholar 

  • Fischer S, Whickens R, Jara J, Aranda M (2013) Variation in antioxidant capacity of quinoa (Chenopodium quinoa Will) subjected to drought stress Flemming and Galway, 1995 in Williams (edt.): cereals and pseudocereals

    Google Scholar 

  • Foucault AS, Mathé V, Lafont R, Even P, Dioh W, Veillet S, Tomé D, Huneau JF, Hermier D, Quignard-Boulangé A (2012) Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Obesity 20:270–277

    CAS  PubMed  Google Scholar 

  • Francesco O, Mattia A, Giorgio G, Giovanni D, Fabiana A, Ruiz CKB, Martinez EA, Mohammad A, Ilaria M, Sara B, Stefania B (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:818–831

    Google Scholar 

  • Francis G, Kerem Z, Makkar HP, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605

    CAS  PubMed  Google Scholar 

  • Friedman M (2007) Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 51:116–134

    CAS  PubMed  Google Scholar 

  • Gani A, Wani S, Masoodi F, Hameed G (2012) Whole-grain cereal bioactive compounds and their health benefits: a review. J Food Process Technol 3:146–156

    Google Scholar 

  • Gawlik-Dziki U, Swieca M, Sułkowski M, Dziki D, Baraniak B, Czyz J (2013) Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts—in vitro study. Food Chem Toxicol 57:154–160

    CAS  PubMed  Google Scholar 

  • Giorio P, Sorrentino G, d’Andria R (1999) Stomatal behavior, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environ Exp Bot 42:95–104

    Google Scholar 

  • Gómez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J Agric Food Chem 60:4620–4627

    PubMed  Google Scholar 

  • Goufo P, Trindade H (2014) Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci Nutr 2:75–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graf BL, Poulev A, Kuhn P, Grace MH, Lila MA, Raskin I (2014) Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chem 163:178–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graf BL, Rojas-Silva P, Rojo LE, Delatorre-Herrera J, Baldeón ME, Raskin I (2015) Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci Food Saf 14:431–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graf BL, Rojo LE, Delatorre-Herrera J, Poulev A, Calfio C, Raskin I (2016) Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of Chenopodium quinoa: variation and correlation to physico-chemical characteristics. J Sci Food Agric 96:633–643

    CAS  PubMed  Google Scholar 

  • Graikou K, Kapeta S, Aligiannis N, Sotiroudis G, Chondrogianni N, Gonos E, Chinou I (2011) Chemical analysis of Greek pollen-Antioxidant, antimicrobial and proteasome activation properties. Chem Cent J 5:33. https://doi.org/10.1186/1752-153X-5-33

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant OM, Davies MJ, Johnson AW, Simpson DW (2012) Physiological and growth responses to water deficits in cultivated strawberry (Fragaria x ananassa) and in one of its progenitors, Fragaria chiloensis. Environ Exp Bot 83:23–32

    Google Scholar 

  • Harra NM, Lemm T, Smith C, Gee D (2011) Quinoa flour is an acceptable replacement for all purpose flour in a peanut butter cookie. J Am Dietet Assoc 111(9 Suppl):A45

    Google Scholar 

  • Hashmi MA, Khan A, Farooq U, Khan S (2018) Alkaloids as cyclooxygenase inhibitors in anticancer drug discovery. Curr Protein Peptide Sci 19:292–301

    CAS  Google Scholar 

  • Henarejos-Escudero P, Guadarrama-Flores B, Guerrero-Rubio MA, Gómez-Pando LR, García-Carmona F, Gandía-Herrero (2018) Development of betalain producing callus lines from colored quinoa varieties (Chenopodium quinoa Willd) F. J Agric Food Chem 66:467–474

    CAS  PubMed  Google Scholar 

  • Henry RJ (1998) Molecular and biochemical characterization of somaclonal variation. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Current plant science and biotechnology in agriculture, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9125-6_24

  • Hirose Y, Fujita T, Ishii T, Ueno N (2010) Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem 119:1300–1306

    CAS  Google Scholar 

  • Ho SS, Pal S (2005) Margarine phytosterols decrease the secretion of atherogenic lipoproteins from HepG2 liver and Caco2 intestinal cells. Atherosclerosis 182:29–36

    CAS  PubMed  Google Scholar 

  • Hu Y, Zhang J, Zou L, Fu C, Li P, Zhao G (2017) Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Int J Biol Macromol 99:622–629

    CAS  PubMed  Google Scholar 

  • Improta F, Kellems R (2001) Comparison of raw, washed and polished quinoa (Chenopodium quinoa Willd.) to wheat, sorghum or maize based diets on growth and survival of broiler chicks. Livest Res Rural Dev 13:1–10

    Google Scholar 

  • Inglett GE, Chen D, Liu SX (2015) Pasting and rheological properties of quinoa-oat composites. Int J Food Sci Technol 50:878–884

    CAS  Google Scholar 

  • Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19:140–145

    CAS  PubMed  Google Scholar 

  • Izhaki I (2002) Emodin—a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217

    CAS  Google Scholar 

  • Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177

    Google Scholar 

  • Jacobsen SE, Risi J (2001) Distribucióngeografica de la quinuafuera de los paisesAndinos. In: Mujica A, Jacobsen SE, Izquierdo J, Marathee J (eds) Quinua (Chenopodium quinoa Willd.)—Ancestral cultivoandino, alimentodelpresente y futuro. FAO, UNA-Puno, CIP, Santiago, Chile, pp 56–70

    Google Scholar 

  • Jacobsen S, Dini I, Schettino O, Tenore G, Dini A (2000) Isolation and characterization of saponins and other minor components in quinoa (Chenopodium quinoa Willd.). In: Proceedings of COST 814 conference, crop development for cool and wet regions of Europe, Pordenone, Italy

    Google Scholar 

  • Jancurova M, Minarovicova L, Dandar A (2009) Quinoa—a review. Department of Food Science and Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic 27:71–79

    CAS  Google Scholar 

  • Jensen CR, Jacobsen SE, Andersen MN, Núñez N, Andersen SD, Rasmussen L, Mogensen VO (2000) Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd) during soil drying. Eur J Agron 13:11–25

    Google Scholar 

  • Jiang X, Hansen HCB, Strobel BW, Cedergreen N (2018) What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides? Environ Pollut 236:416–424

    CAS  PubMed  Google Scholar 

  • Karyotis T, Iliadis C, Noulas C, Mitsibonas T (2003) Preliminary research on seed production and nutrient content for certain quinoa varieties in a saline–sodic soil. J Agron Crop Sci 189:402–408

    Google Scholar 

  • Khan MI (2016) Plant betalains: safety, antioxidant activity, clinical efficacy, and bioavailability. Compr Rev Food Sci Food Saf 15:316–330

    CAS  PubMed  Google Scholar 

  • Kim SK, Kim HJ, Choi SE, Park KH, Choi HK, Lee MW (2008) Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E 2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg. Arch Pharm Res 31:424–428

    CAS  PubMed  Google Scholar 

  • Knölker H (2016) The alkaloids, 1st edn, vol 75. Academic, Cambridge, 528 p. ISBN-13: 978-0128034347

    Google Scholar 

  • Koyro HW, Eisa SS (2008) Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 302:79–90

    CAS  Google Scholar 

  • Kuljanabhagavad T, Wink M (2009) Biological activities and chemistry of saponins from Chenopodium quinoa Willd. Phytochem Rev 8:473–490

    CAS  Google Scholar 

  • Liu F, Stützel H (2002) Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying. Eur J Agron 16:137–150. https://doi.org/10.1016/S1161-0301(01)00122-8

    Article  Google Scholar 

  • Lutz M, Martínez A, Martínez EA (2013) Daidzein and genistein contents in seeds of quinoa (Chenopodium quinoa Willd.) from local ecotypes grown in arid Chile. Ind Crop Prod 49:117–121

    CAS  Google Scholar 

  • Madl T, Sterk H, Mittelbach M, Rechberger GN (2006) Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. J Am Soc Mass Spectrom 17:795–806

    CAS  PubMed  Google Scholar 

  • Man S, Gao W, Zhang Y, Huang L, Liu C (2010) Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia 81:703–714

    CAS  PubMed  Google Scholar 

  • Martínez EA, Veas E, Jorquera C, San Martín R, Jara P (2009) Reintroduction of Chenopodium quinoa Willd. into arid Chile: cultivation of two lowland races under extremely low irrigation. J Agron Crop Sci 195:1–10

    Google Scholar 

  • Mastebroek HD, Limburg H, Gilles T, Marvin HJP (2000) Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd). J Sci Food Agric 80:152–156

    CAS  Google Scholar 

  • Miranda M, Delatorre-Herrera J, Vega-Galvez A, Jorquera E, Quispe-Fuentes I, Martinez EA (2014) Antimicrobial potential and phytochemical content of six diverse sources of quinoa seeds (Chenopodium quinoa Willd). Agric Sci 5:1015–1024

    Google Scholar 

  • Misra A (2009) Studies on biochemical and physiological aspects in relation to phyto-medicinal qualities and efficacy of the active ingredients during the handling, cultivation and harvesting of the medicinal plants. J Med Plants Res 3:1140–1146

    Google Scholar 

  • Mithila M, Khanum F (2015) Effectual comparison of quinoa and amaranth supplemented diets in controlling appetite; a biochemical study in rats. J Food Sci Technol 52:6735–6741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montoya G, Gutierrez G, D’vries R, Ellena J, Panay AJ (2018) Spergulagenic acid A: isolation and single crystal structure elucidation. J Mol Struct 1173:937–941

    CAS  Google Scholar 

  • Narayanan K (2004) Insect defence: its impact on microbial control of insect pests. Curr Sci 86:800–814

    CAS  Google Scholar 

  • Navruz-Varli S, Sanlier N (2016) Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J Cereal Sci 69:371–376

    CAS  Google Scholar 

  • Oakenfull D, Sidhu G (1990) Could saponins be a useful treatment for hypercholesterolaemia? Eur J Clin Nutr 44:79–88

    CAS  PubMed  Google Scholar 

  • Oatway L, Vasanthan T, Helm JH (2001) Phytic acid. Food Rev Intl 17:419–431

    CAS  Google Scholar 

  • Paśko P, Sajewicz M, Gorinstein S, Zachwieja Z (2008) Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. Acta Chromatogr 20:661–672

    Google Scholar 

  • Patra AK (2012) An overview of antimicrobial properties of different classes of phytochemicals. In: Dietary phytochemicals and microbes. Springer Netherlands, pp 1–32. https://doi.org/10.1007/978-94-007-3926-0. eBook ISBN 978-94-007-3926-0

  • Pauk J, Ertugrul F, Bartok T, Mihaly R, Kiss O, Gseuz L, Dudits D (2002) Eggplant. Plant Cell Tissue Org Cult 65:91–107

    Google Scholar 

  • Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125

    CAS  PubMed  Google Scholar 

  • Pulvento C, Riccardi M, Lavini A, Iafelice G, Marconi E, d’Andria R (2012) Yield and quality characteristics of quinoa grown in open field under different saline and non-saline irrigation regimes. J Agron Crop Sci 198:254–263

    CAS  Google Scholar 

  • Rayner M, Timgren A, Sjöö M, Dejmek P (2012) Quinoa starch granules: a candidate for stabilising food-grade Pickering emulsions. J Sci Food Agric 92:1841–1847

    CAS  PubMed  Google Scholar 

  • Razzaghi F, Ahmadi SH, Jacobsen SE, Jensen CR, Andersen MN (2012) Effects of salinity and soil–drying on radiation use efficiency, water productivity and yield of Quinoa (Chenopodium quinoa Willd.) J. Agron Crop Sci 198:173–184

    CAS  Google Scholar 

  • Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23:519–534

    CAS  PubMed  Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Intl 19:179–189

    Google Scholar 

  • Repo-Carrasco-Valencia R (2011) Andean indigenous food crops: nutritional value and bioactive compounds. Ph.D. Thesis, University of Turku, Turku, Finland, p 176. ISBN 978-951-29-4604-4 (PRINT) ISBN 978-951-29-4605-1

    Google Scholar 

  • Repo-Carrasco-Valencia R, Hellström JK, Pihlava J-M, Mattila PH (2010) Flavonoids and other phenolic compounds in Andean indigenous grains: quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem 120:128–133

    CAS  Google Scholar 

  • Rickard SE, Thompson LU (1997) Interactions and biological effects of phytic acid. ACS Publications, Chapter 17, pp 294–312. https://doi.org/10.1021/bk-1997-0662.ch017. ACS Symposium Series Vol. 662. eISBN: 9780841216150

  • Roberts MF (2013) Alkaloids: biochemistry, ecology, and medicinal applications. Springer US, XXII, 482. https://doi.org/10.1007/978-1-4757-2905-4. eBook ISBN 978-1-4757-2905-4

  • Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, Coulibaly A, Canahua-Murillo MP, Zurita-Silva A (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Devel 34:349–359

    Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martínez EA, Molina-Montenegro M, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341

    CAS  PubMed  Google Scholar 

  • Saeki K, Hayakawa S, Isemura M, Miyase T (2000) Importance of a pyrogallol-type structure in catechin compounds for apoptosis-inducing activity. Phytochemistry 53:391–394

    CAS  PubMed  Google Scholar 

  • Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, Jabbar A (2010) Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 27:238–254

    CAS  PubMed  Google Scholar 

  • Shabala S, Hariadi Y, Jacobsen SE (2013) Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. J Plant Physiol 170:906–914

    CAS  PubMed  Google Scholar 

  • Shahin H (2019) Callus formation and production of secondary metabolites by seedling explants of Chenopodium quinoa. Egypt J Bot 59:451–460

    Google Scholar 

  • Soriano IR, Riley IT, Potter MJ, Bowers WS (2004) Phytoecdysteroids: a novel defense against plant-parasitic nematodes. J Chem Ecol 30:1885–1899

    CAS  PubMed  Google Scholar 

  • Sparg S, Light M, Van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    CAS  PubMed  Google Scholar 

  • Srikanth S, Chen Z (2016) Plant protease inhibitors in therapeutics-focus on cancer therapy. Front Pharmacol 7:470. https://doi.org/10.3389/fphar.2016.00470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HX, Xie Y, Ye YP (2009) Advances in saponin-based adjuvants. Vaccine 27:1787–1796

    CAS  PubMed  Google Scholar 

  • Suttiarporn P, Chumpolsri W, Mahatheeranont S, Luangkamin S, Teepsawang S, Leardkamokkarn V (2015) Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients 7:1672–1687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tahi H, Wahbi S, Wakrim R, Aganchich B, Serraj R, Centritto M (2007) Water relations, photosynthesis, growth and water-use efficiency in tomato plants subjected to partial root zone drying and regulated deficit irrigation. Plant Biosyst 141:265–274. https://doi.org/10.1080/11263500701401927

    Article  Google Scholar 

  • Tang Y, Li X, Chen PX, Zhang B, Hernandez M, Zhang H, Tsao R (2015) Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem 174:502–508

    CAS  PubMed  Google Scholar 

  • Tang Y, Zhang B, Li X, Chen PX, Zhang H, Liu R, Tsao R (2016) Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects. J Agric Food Chem 64:1712–1719

    CAS  PubMed  Google Scholar 

  • Tava A, Avato P (2006) Chemical and biological activity of triterpene saponins from Medicago species. Nat Prod Commun 1:1159–1180

    CAS  Google Scholar 

  • Taylor JRN, Parker ML (2002) Quinoa. In: Belton PS, Taylor JRN (eds) Pseudocereals and less common cereals: grain properties and utilization. Springer, Berlin, pp 93–122

    Google Scholar 

  • Terwel D, Steffensen KR, Verghese PB, Kummer MP, Gustafsson J-Å, Holtzman DM, Heneka MT (2011) Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis. J Neurosci 31:7049–7059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas FM, Gausling T (2000) Morphological and physiological responses of oak seedlings (Quercus petraea and Q. robur) to moderate drought. Ann For Sci 57:325–333

    Google Scholar 

  • Thummel CS, Chory J (2002) Steroid signaling in plants and insects—common themes, different pathways. Genes Dev 16:3113–3312

    CAS  PubMed  Google Scholar 

  • Ti H, Li Q, Zhang R, Zhang M, Deng Y, Wei Z, Chi J, Zhang Y (2014) Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in Southern China. Food Chem 159:166–174

    CAS  PubMed  Google Scholar 

  • Tongsawang P, Sdoodee S (2008) Monitoring of sap flow, leaf water potential, stomatal conductance, and latex yield of rubber trees under irrigation management. Songklanakarin J Sci Technol 30:565–570

    Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147. https://doi.org/10.1007/s10311-006-0068-8

    Article  CAS  Google Scholar 

  • Tsonev T, Wahbi S, Sun P, Sorrentino G, Centritto M (2014) Gas exchange, water relations and their relationships with photochemical reflectance index in Quercus ilex plants during water stress and recovery. Int J Agric Biol 16:335–341

    CAS  Google Scholar 

  • Valcárcel-Yamani B, da Silva Lannes CS (2012) Applications of quinoa (Chenopodium Quinoa Willd.) and Amaranth (Amaranthus spp.) and their influence in the nutritional value of cereal based foods. Pharmaceut Biochem 2:265–275

    Google Scholar 

  • Valencia-Chamorro SA (2003) Quinoa in: caballero B. Encyclopedia of food science and nutrition, vol 8. Academic, Masterdam, pp 4895–4902

    Google Scholar 

  • Valencia-Chamorro SA (2004) Quinoa. In Wrigley C (ed), Encyclopedia of grain science. pp 1–8

    Google Scholar 

  • Valoy M, Reguilón C, Podazza G (2015) The potential of using natural enemies and chemical compounds in quinoa for biological control of insect pests. Quinoa: improvement and sustainable production. Wiley, pp 63–86. https://doi.org/10.1002/9781118628041

  • Van Raamsdonk L, Pinckaers V, Ossenkoppele J, Houben R, Lotgering M, Groot M (2010) Quality assessments of untreated and washed quinoa (Chenopodium quinoa) seeds based on histological and foaming capacity investigations. Microscopy: science, technology, applications and education. Formatex Research Center

    Google Scholar 

  • Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric 90(15):2541–2547. https://doi.org/10.1002/jsfa.4158. PMID: 20814881

    Article  CAS  PubMed  Google Scholar 

  • Walters D (2017) Fortress plant: how to survive when everything wants to eat you, 1st edn. Oxford University Press, 320 p. ISBN-13: 978-0198745600

    Google Scholar 

  • Wang S, Opassathavorn A, Zhu F (2015) Influence of quinoa flour on quality characteristics of cookie, bread and Chinese steamed bread. J Texture Stud 46:281–292

    CAS  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    PubMed  PubMed Central  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    CAS  PubMed  Google Scholar 

  • Yao Y, Yang X, Shi Z, Ren G (2014a) Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J Food Sci 79:H1018–H1023

    CAS  PubMed  Google Scholar 

  • Yao Y, Shi Z, Ren G (2014b) Antioxidant and immunoregulatory activity of polysaccharides from quinoa (Chenopodium quinoa Willd.). Int J Mol Sci 15:19307–19318

    PubMed  PubMed Central  Google Scholar 

  • Yao Y, Zhu Y, Gao Y, Shi Z, Hu Y, Ren G (2015) Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation. Food Funct 6:3282–3290

    CAS  PubMed  Google Scholar 

  • Zair I, Chlyah A, Sabounji K, Tittahsen M, Chlyah H (2003) Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tissue Org Cult 73:237–244

    CAS  Google Scholar 

  • Zhang B, Deng Z, Ramdath DD, Tang Y, Chen PX, Liu R, Liu Q, Tsao R (2015) Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem 172:862–872

    CAS  PubMed  Google Scholar 

  • Zhu N, Sheng S, Li D, LaVoie EJ, Karwe MV, Rosen RT, Ho CT (2001) Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa Willd). J Food Lipids 8:37–44

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Oluwaseun Adetunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adetunji, C.O. et al. (2021). Recent Advances in the Application of Biotechnology for Improving the Production of Secondary Metabolites from Quinoa. In: Varma, A. (eds) Biology and Biotechnology of Quinoa. Springer, Singapore. https://doi.org/10.1007/978-981-16-3832-9_17

Download citation

Publish with us

Policies and ethics