Skip to main content

Anaerobic Digestate: A Sustainable Source of Bio-fertilizer

  • Chapter
  • First Online:
Sustainable Intensification for Agroecosystem Services and Management

Abstract

Intensive use of inorganic fertilizers has provoked risk to the well-being of humans and their surroundings including high cost, high carbon (C) footprint, giving rise to eutrophication, pollution caused by nitrate, low microbial activity in the soil, and losing the soil organic C. Moreover, bulk of the nitrogen (N) fixation is responsible for 1–2% of the world’s entire energy utilization and 3–5% of the earth’s natural gas expenditure. Bio-fertilizers, the substitute for synthetic fertilizers, are natural, decomposable, organic, and cost-efficient in contrast to the synthetic fertilizers and have the extensive potential for enhancing global food safety by elevating crop production and fertility of the soil. Bio-fertilizers comprise plant remnants, C-based matter, and several particular types of microorganisms. Anaerobic digestion of organic wastes yields two key products, i.e., biogas and digestate. The biogas is utilized to generate power and heat, while the digestate is valorized in sustainable farming as a bio-fertilizer and soil enhancement. Substituting synthetic fertilizers with digestate diminishes the greenhouse gas (GHG) emissions linked with fertilizer production, saves energy, and facilitates recirculation of plant minerals. Replacing 1 ton of synthetic fertilizer with digestate preserves approximately 108 tons of water and GHG emission of 4 tons CO2-eq. Digestates have positive impacts on the physical, chemical, and biological features of the soil by introducing microbial biomass, sustaining the rhizosphere’s ecology, increasing the yield of plants, supplying excessive amounts of soluble nutrients (NPK), and discharging plant growth-modulating compounds. The effect on the yield may be analogous or greater than synthetic fertilizers and animal manure. The amount of digestate produced is dependent upon the quantity and chemical composition of organic waste used for anaerobic digestion. The digestate manufactured can be both incorporated directly and additionally developed by several treatment practices leading to the production of marketable bio-fertilizers. Moreover, digestate processing minimizes storage and conveyance expenses. The current chapter deals with the constructive and versatile character of anaerobic digestates concerning the soil sustainability and plant development and its role in safeguarding the environment as sustainable and economical input for the agriculture sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Anaerobic digestion

C:

Carbon

Ca:

Calcium

CH4:

Methane

CO2:

Carbon dioxide

GHG:

Greenhouse gas

H2:

Hydrogen

HM:

Heavy metals

HRT:

Hydraulic retention time

K:

Potassium

Mg:

Magnesium

MGRT:

Minimum guaranteed retention time

N:

Nitrogen

NH3:

Ammonia

NH4+:

Ammonium

N2O:

Nitrous oxide

NO3:

Nitrate

P:

Phosphorus

POP:

Persistent organic pollutant

S:

Sulfur

VFAs:

Volatile fatty acids

UK:

United Kingdom

US:

United States

References

  • Abubaker J, Cederlund H, Arthurson V, Pell M (2013) Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Appl Soil Ecol 72:171–180

    Article  Google Scholar 

  • Achinas S, Achinas V, Euverink GJW (2017) A technological overview of biogas production from biowaste. Engineering 3(3):299–307

    Article  Google Scholar 

  • Adeli A, Varco JJ, Sistani KR, Rowe DE (2005) Effects of swine lagoon effluent relative to commercial fertilizer applications on warm-season forage nutritive value. Agron J 97(2):408–417

    Article  CAS  Google Scholar 

  • Ahring BK (2003) Perspectives for anaerobic digestion. In: Biomethanation. Springer, Berlin, pp 1–30

    Google Scholar 

  • Al Seadi T (2001) Good practice in quality management of AD residues from biogas production. Report made for the International Energy Agency, Task

    Google Scholar 

  • Al Seadi T, Lukehurst C (2012) Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy 37:40

    Google Scholar 

  • Al Seadi T, Nielsen BH (2002) Manure based biogas System-Danish experience. In: Organic Diversion Symp., Ontario vol. I, pp. 1–15

    Google Scholar 

  • Al Seadi T, Drosg B, Fuchs W, Rutz D, Janssen R (2013) Biogas digestate quality and utilization. In: The biogas handbook. Woodhead Publishing, Sawston, pp 267–301

    Chapter  Google Scholar 

  • Alburquerque JA, De la Fuente C, Campoy M, Carrasco L, Nájera I, Baixauli C, Bernal MP (2012) Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur J Agron 43:119–128

    Article  Google Scholar 

  • Alemán-Nava GS, Meneses-Jácome A, Cárdenas-Chávez DL, Díaz-Chavez R, Scarlat N, Dallemand JF, Parra R (2015) Bioenergy in Mexico: status and perspective. Biofuels Bioprod Biorefin 9(1):8–20

    Article  CAS  Google Scholar 

  • Alfa MI, Adie DB, Igboro SB, Oranusi US, Dahunsi SO, Akali DM (2014) Assessment of bio-fertiliser quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings. Renew Energy 63:681–686

    Article  Google Scholar 

  • Angelidaki I, Hendriksen HV, Mathrani IM, Schmidt JE, Sørensen AH, Ahring BK (1996) The biogas process. Lecture notes for: Energy from biomass (6362)

    Google Scholar 

  • Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energ Rev 15(9):4295–4301

    Article  CAS  Google Scholar 

  • Arthurson V (2009) Closing the global energy and nutrient cycles through application of biogas residue to agricultural land–potential benefits and drawback. Energies 2(2):226–242

    Article  CAS  Google Scholar 

  • Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z (2018) Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour Technol 268:773–786

    Article  CAS  PubMed  Google Scholar 

  • Austin G, Morris G (2012) Biogas production in Africa. In: Bioenergy for sustainable development in Africa. Springer, Dordrecht, pp 103–115

    Chapter  Google Scholar 

  • Badshah M (2012) Evaluation of process parameters and treatments of different raw materials for biogas production. Lund University, Lund

    Google Scholar 

  • Bagge E, Sahlström L, Albihn A (2005) The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Res 39(20):4879–4886

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Li Z, Ni J, Yun Y, Zhou X (2017) Nutrient recovery of liquid digestate from anaerobic digestion of human excrement by evaporation. Appl Eng Agric 33(2):227–234

    Article  Google Scholar 

  • Bakry MA, Soliman YR, Moussa SA (2009) Importance of micronutrients, organic manure and biofertilizer for improving maize yield and its components grown in desert sandy soil. Res J Agric Biol Sci 5(1):16–23

    CAS  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2018) Micro-remediation of metals: a new frontier in bioremediation. In: Hussain C (ed) Handbook of environmental materials management. Springer, Cham

    Google Scholar 

  • Banerjee A, Meena RS, Jhariya MK, Yadav DK (2021) Agroecological footprints management for sustainable food system. Springer, Singapore, p 514

    Book  Google Scholar 

  • Bauer A, Mayr H, Hopfner-Sixt K, Amon T (2009) Detailed monitoring of two biogas plants and mechanical solid–liquid separation of fermentation residues. J Biotechnol 142(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Bendixen HJ (1999) Hygienic safety–results of scientific investigations in Denmark (sanitation requirements in Danish biogas plants). In: IEA bioenergy workshop: hygienic and environmental aspects of AD: Legislation and experiences in Europe

    Google Scholar 

  • Biogas A (2018) Africa biogas partnership programme. http://www.africabiogas.org

  • Birkmose T (2007) Digested manure is a valuable fertilizer. In: European biogas workshop: the future of biogas in Europe, Vol. 3, pp 89–94

    Google Scholar 

  • Bolzonella D, Fatone F, Gottardo M, Frison N (2018) Nutrients recovery from anaerobic digestate of agro-waste: techno-economic assessment of full scale applications. J Environ Manag 216:111–119

    Article  CAS  Google Scholar 

  • Botheju PDC (2010) Effects of free oxygen on anaerobic digestion (Doctoral dissertation, Doctoral thesis at Norwegian University of Science and Technology, Trondheim, Norway, vol 188, pp 245–255

    Google Scholar 

  • Braun R, Weiland P, Wellinger A (2008) Biogas from energy crop digestion. In: IEA bioenergy task (Vol. 37, pp 1–20)

    Google Scholar 

  • Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101(22):8713–8717

    Article  CAS  PubMed  Google Scholar 

  • Bustamante MA, Restrepo AP, Alburquerque JA, Pérez-Murcia MD, Paredes C, Moral R, Bernal MP (2013) Recycling of anaerobic digestates by composting: effect of the bulking agent used. J Clean Prod 47:61–69

    Article  CAS  Google Scholar 

  • Canali S, Di Bartolomeo E, Tittarelli F, Montemurro F, Verrastro V, Ferri D (2011) Comparison of different laboratory incubation procedures to evaluate nitrogen mineralization in soils amended with aerobic and anaerobic stabilized organic materials. J Food Agric Environ 9:540–546

    Google Scholar 

  • Cao Y, Wang J, Wu H, Yan S, Guo D, Wang G, Ma Y (2016) Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression. Appl Soil Ecol 107:116–123

    Article  Google Scholar 

  • Chun-Li W, Shiuan-Yuh C, Chiu-Chung Y (2014) Present situation and future perspective of bio-fertiliser for environmentally friendly agriculture. Annual Reports, pp 1–5

    Google Scholar 

  • Coelho JJ, Prieto ML, Dowling S, Hennessy A, Casey I, Woodcock T, Kennedy N (2018) Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag 78:8–15

    Article  CAS  PubMed  Google Scholar 

  • Coelho JJ, Prieto ML, Hennessy A, Casey I, Woodcock T, Kennedy N (2019) Determination of microbial numbers in anaerobically digested bio-fertilisers. Environ Technol 2019:1–11. https://doi.org/10.1080/09593330.2019.1645214

    Article  CAS  Google Scholar 

  • Coutinho J, Dalla Costa L, Borin M, Battilani A, Dolezal F, Bizik J, Plauborg FL (2006) One single value for maximum N application from organic residues: Is it technically and environmentally sound? In: ESA Congress

    Google Scholar 

  • Coutteau P, Sorgeloos P (1992) The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. J Shellfish Res 11:467–467

    Google Scholar 

  • Crawford JH (1983) Composting of agricultural wastes-a review. Process Biochem 18:14–18

    Google Scholar 

  • Crolla A, Kinsley C, Pattey E (2013) Land application of digestate. In: The biogas handbook. Woodhead Publishing, Cambridge, pp 302–325

    Chapter  Google Scholar 

  • Czekala W (2017) Processing digestate from agricultural biogas plant to obtain financial and environmental benefits. In: HAICTA, pp 188–195

    Google Scholar 

  • De la Fuente C, Alburquerque JA, Clemente R, Bernal MP (2013) Soil C and N mineralisation and agricultural value of the products of an anaerobic digestion system. Biol Fertil Soils 49(3):313–322

    Article  CAS  Google Scholar 

  • De la Rubia MÁ, Walker M, Heaven S, Banks CJ, Borja R (2010) Preliminary trials of in situ ammonia stripping from source segregated domestic food waste digestate using biogas: effect of temperature and flow rate. Bioresour Technol 101(24):9486–9492

    Article  PubMed  CAS  Google Scholar 

  • Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci 7(2):173–190

    CAS  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. Sustain Environ 35:1–21

    Google Scholar 

  • Driver J, Lijmbach D, Steen I (1999) Why recover phosphorus for recycling, and how? Environ Technol 20(7):651–662

    Article  CAS  Google Scholar 

  • Drosg B, Fuchs W, Al Seadi T, Madsen M, Linke B (2015) Nutrient recovery by biogas digestate processing. IEA Bioenergy, Dublin, p 711

    Google Scholar 

  • Dumitru M (2014) Studies concerning the utilisation of digestate in biogas plants. Sci Pap Ser 14:1

    Google Scholar 

  • Eurostat SA (2017) Your key to European statistics

    Google Scholar 

  • Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77

    Article  CAS  Google Scholar 

  • Fagerström A, Al Seadi T, Rasi S, Briseid T (2018) The role of anaerobic digestion and biogas in the circular economy. IEA Bioenergy

    Google Scholar 

  • Fang C, Boe K, Angelidaki I (2011) Anaerobic co-digestion of by-products from sugar production with cow manure. Water Res 45(11):3473–3480

    Article  CAS  PubMed  Google Scholar 

  • Fechter M, Kraume M (2016) Digestate treatment techniques. CzasopismoTechniczn

    Google Scholar 

  • Fernandez-Bayo JD, Achmon Y, Harrold DR, McCurry DG, Hernandez K, Dahlquist-Willard RM, Simmons CW (2017) Assessment of two solid anaerobic digestate soil amendments for effects on soil quality and biosolarization efficacy. J Agric Food Chem 65(17):3434–3442

    Article  CAS  PubMed  Google Scholar 

  • Fouda S, von Tucher S, Lichti F, Schmidhalter U (2013) Nitrogen availability of various biogas residues applied to ryegrass. J Plant Nutr Soil Sci 176(4):572–584

    Article  CAS  Google Scholar 

  • Frąc M, Oszust K, Lipiec J (2012) Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors 12(3):3253–3268

    Article  PubMed  PubMed Central  Google Scholar 

  • Franke-Whittle IH, Walter A, Ebner C, Insam H (2014) Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag 34(11):2080–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs W, Drosg B (2010) Technologiebewertung von Gärrestbehandlungs-und Verwertungskonzepten. na

    Google Scholar 

  • Fuchs W, Drosg B (2013) Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci Technol 67(9):1984–1993

    Article  CAS  PubMed  Google Scholar 

  • Gao T, Li X (2011) Using thermophilic anaerobic digestate effluent to replace freshwater for bioethanol production. Bioresour Technol 102(2):2126–2129

    Article  CAS  PubMed  Google Scholar 

  • Garg RN, Pathak H, Das DK, Tomar RK (2005) Use of fly ash and biogas slurry for improving wheat yield and physical properties of soil. Environ Monit Assess 107(1-3):1–9

    Article  CAS  PubMed  Google Scholar 

  • Gaur V (2010) Biofertilizer–necessity for sustainability. J Adv Dev 1:7–8

    Google Scholar 

  • Gaur RZ, Khan AA, Suthar S (2017) Effect of thermal pre-treatment on co-digestion of duckweed (Lemna gibba) and waste activated sludge on biogas production. Chemosphere 174:754–763

    Article  CAS  PubMed  Google Scholar 

  • Gell K, van Groenigen J, Cayuela ML (2011) Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. J Hazard Mater 186(2-3):2017–2025

    Article  CAS  PubMed  Google Scholar 

  • Georgacakis D, Tsavdaris A (1992) Combined anaerobic digestion of animal slurries and food industry liquid by-products. REUR Technical Series (FAO)

    Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, London

    Book  Google Scholar 

  • Global Methane Initiative (2013) Successful applications of anaerobic digestion from across the world

    Google Scholar 

  • Gómez X, Cuetos MJ, García AI, Morán A (2007) An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. J Hazard Mater 149(1):97–105

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Yan X, Wang J, Hu T, Gong Y (2011) Long-term applications of chemical and organic fertilizers on plant-available nitrogen pools and nitrogen management index. Biol Fertil Soils 47(7):767

    Article  CAS  Google Scholar 

  • Govasmark E, Stäb J, Holen B, Hoornstra D, Nesbakk T, Salkinoja-Salonen M (2011) Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Manag 31(12):2577–2583

    Article  CAS  PubMed  Google Scholar 

  • Govender I, Thopil GA, Inglesi-Lotz R (2019) Financial and economic appraisal of a biogas to electricity project. J Clean Prod 214:154–165

    Article  Google Scholar 

  • Grigatti M, Di Girolamo G, Chincarini R, Ciavatta C, Barbanti L (2011) Potential nitrogen mineralization, plant utilization efficiency and soil CO2 emissions following the addition of anaerobic digested slurries. Biomass Bioenergy 35(11):4619–4629

    Article  CAS  Google Scholar 

  • Groot LD, Bogdanski A (2013) Bioslurry-brown gold? A review of scientific literature on the co-product of biogas production. Food and Agriculture Organization of the United Nations (FAO)

    Google Scholar 

  • Gujer W, Zehnder AJ (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15(8-9):127–167

    Article  CAS  Google Scholar 

  • Gunes B, Stokes J, Davis P, Connolly C, Lawler J (2019) Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: a review. Renew Sust Energ Rev 113:109281

    Article  CAS  Google Scholar 

  • Gunnarsson A, Bengtsson F, Caspersen S (2010) Use efficiency of nitrogen from biodigested plant material by ryegrass. J Plant Nutr Soil Sci 173(1):113–119

    Article  CAS  Google Scholar 

  • Guo J, Peng Y, Ni BJ, Han X, Fan L, Yuan Z (2015) Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Factories 14(1):33

    Article  CAS  Google Scholar 

  • Guštin S, Marinšek-Logar R (2011) Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Saf Environ Prot 89(1):61–66

    Article  CAS  Google Scholar 

  • Haraldsen TK, Andersen U, Krogstad T, Sørheim R (2011) Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley. Waste Manag Res 29(12):1271–1276

    Article  CAS  PubMed  Google Scholar 

  • Herbes C, Roth U, Wulf S, Dahlin J (2020) Economic assessment of different biogas digestate processing technologies: a scenario-based analysis. J Clean Prod 255:120282

    Article  Google Scholar 

  • Hjorth M, Christensen KV, Christensen ML, Sommer SG (2011) Solid–liquid separation of animal slurry in theory and practice. In: Sustainable agriculture, vol 2. Springer, Dordrecht, pp 953–986

    Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484

    Article  CAS  PubMed  Google Scholar 

  • Holtman KM, Bozzi DV, Franqui-Villanueva D, Offeman RD, Orts WJ (2017) Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp. Renew Energy 113:257–265

    Article  CAS  Google Scholar 

  • IEA (2016) World energy outlook 2016, Executive Summary. International Energy Agency, pp 1–8

    Google Scholar 

  • Insam H, Gómez-Brandón M, Ascher J (2015) Manure-based biogas fermentation residues–friend or foe of soil fertility? Soil Biol Biochem 84:1–14

    Article  CAS  Google Scholar 

  • Itelima JU, Bang WJ, Onyimba IA, Oj E (2018) A review: bio-fertiliser; a key player in enhancing soil fertility and crop productivity. J Microbiol Biotechnol Rep 2:22–28

    Google Scholar 

  • Jamaludin Z, Rollings-Scattergood S, Lutes K, Vaneeckhaute C (2018) Evaluation of sustainable scrubbing agents for ammonia recovery from anaerobic digestate. Bioresour Technol 270:596–602

    Article  CAS  PubMed  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, forest and environmental management. Springer, Singapore, p 606

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. Apple Academic Press Inc., New York, p 335

    Book  Google Scholar 

  • Jhariya MK, Meena RS, Banerjee A (2021a) Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Jhariya MK, Meena RS, Banerjee A (2021b) Ecological intensification of natural resources towards sustainable productive system. In: Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Chapter  Google Scholar 

  • Jia G, Zhang H, Krampe J, Muster T, Gao B, Zhu N, Jin B (2017) Applying a chemical equilibrium model for optimizing struvite precipitation for ammonium recovery from anaerobic digester effluent. J Clean Prod 147:297–305

    Article  CAS  Google Scholar 

  • Jingming L (2014) The future of biogas in China. China biogas society Berlin Germany. Retrieved from www.abfz.de

    Google Scholar 

  • Johansen A, Carter MS, Jensen ES, Hauggard-Nielsen H, Ambus P (2013) Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O. Appl Soil Ecol 63:36–44

    Article  Google Scholar 

  • Juárez MFD, Waldhuber S, Knapp A, Partl C, Gómez-Brandón M, Insam H (2013) Wood ash effects on chemical and microbiological properties of digestate-and manure-amended soils. Biol Fertil Soils 49(5):575–585

    Article  CAS  Google Scholar 

  • Kapoor R, Vijay VD (2013) Evaluation of existing low cost gas bottling systems for vehicles use adaption in developing economies. Public deliverable EU FP7 VALORGAS project (grant agreement no. 241334)

    Google Scholar 

  • Kavitha S, Devi TP, Kannah RY, Kaliappan S, Banu JR (2019) Post-treatment methods for organic solid wastes. https://doi.org/10.2166/9781780409740_0323

  • Keotiamchanh S (2018) Food waste anaerobic digestate treatment and management strategies. Master’s Thesis. Environmental Engineering and Management, Asian Institute of Technology, Thailand

    Google Scholar 

  • Khan N, Jhariya MK, Raj A, Banerjee A, Meena RS (2021a) Soil carbon stock and sequestration: implications for climate change adaptation and mitigation. In: Jhariya MK, Meena RS, Banerjee A (eds) Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Khan N, Jhariya MK, Raj A, Banerjee A, Meena RS (2021b) Eco-designing for sustainability. In: Jhariya MK, Meena RS, Banerjee A (eds) Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Kharrazi SM, Younesi H, Abedini-Torghabeh J (2014) Microbial biodegradation of waste materials for nutrients enrichment and heavy metals removal: an integrated composting-vermicomposting process. Int Biodeterior Biodegrad 92:41–48

    Article  CAS  Google Scholar 

  • Klink G, Salewski C, Bolduan P (2007) VomGärrestzumNährstoffkonzentrat (From digestate to nutrient concentrate). Verfahrenstechnik 10:46–47

    Google Scholar 

  • Knoop C, Dornack C, Raab T (2018) Effect of drying, composting and subsequent impurity removal by sieving on the properties of digestates from municipal organic waste. Waste Manag 72:168–177

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Meena RS, Jhariya MK (2020) Resources use efficiency in agriculture. Springer, Singapore, p 760

    Book  Google Scholar 

  • Kumar S, Meena RS, Datta R, Verma SK, Yadav GS, Pradhan GS, Molaei A, Rahman GKMM, Mashuk HA (2020a) Legumes for carbon and nitrogen cycling: an organic approach. Carbon Nitrogen Cycl Soil. https://doi.org/10.1007/978-981-13-7264-3_10

  • Kumar S, Meena RS, Singh RK, Munir TM, Datta R, Danish S, Singh GS, Kumar S (2021) Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice based cropping system. Sci Rep 11:5289. https://doi.org/10.1038/s41598-021-84742-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupper T, Bürge D, Bachmann HJ, Güsewell S, Mayer J (2014) Heavy metals in source-separated compost and digestates. Waste Manag 34(5):867–874

    Article  CAS  PubMed  Google Scholar 

  • Larsen T, Luxhøi J, Magid J, Jensen LS, Krogh PH (2007) Properties of anaerobically digested and composted municipal solid waste assessed by linking soil mesofauna dynamics and nitrogen modelling. Biol Fertil Soils 44(1):59–68

    Article  Google Scholar 

  • Lencioni G, Imperiale D, Cavirani N, Marmiroli N, Marmiroli M (2016) Environmental application and phytotoxicity of anaerobic digestate from pig farming by in vitro and in vivo trials. Int J Environ Sci Technol 13(11):2549–2560

    Article  CAS  Google Scholar 

  • Levén L, Eriksson AR, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59(3):683–693

    Article  PubMed  CAS  Google Scholar 

  • Logan M, Visvanathan C (2019) Management strategies for anaerobic digestate of organic fraction of municipal solid waste: current status and future prospects. Waste Manag Res 37(1):27–39

    Article  CAS  PubMed  Google Scholar 

  • Long A, Heitman J, Tobias C, Philips R, Song B (2013) Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microbiol 79(1):168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukehurst CT, Frost P, Al Seadi T (2010) Utilisation of digestate from biogas plants as bio-fertiliser. IEA Bioenergy, pp 1–36

    Google Scholar 

  • Magulova K (2012) Stockholm convention on persistent organic pollutants: triggering, streamlining and catalyzing global scientific exchange. Atmos Pollut Res 3(4):366–368

    Article  Google Scholar 

  • Makádi M, Tomócsik A, Orosz V (2012) Digestate: a new nutrient source–review. Biogas 2012:295–310

    Google Scholar 

  • Marti N, Bouzas A, Seco A, Ferrer J (2008) Struvite precipitation assessment in anaerobic digestion processes. Chem Eng J 141(1-3):67–74

    Article  CAS  Google Scholar 

  • Masciandaro G, Ceccanti B (1999) Assessing soil quality in different agro-ecosystems through biochemical and chemico-structural properties of humic substances. Soil Tillage Res 51(1-2):129–137

    Article  Google Scholar 

  • Massé DI, Croteau F, Masse L (2007) The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors. Bioresour Technol 98(15):2819–2823

    Article  PubMed  CAS  Google Scholar 

  • Maucieri C, Barbera AC, Vymazal J, Borin M (2017) A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric For Meteorol 236:175–193

    Article  Google Scholar 

  • Maurer C, Müller J (2012) Ammonia (NH3) emissions during drying of untreated and dewatered biogas digestate in a hybrid waste-heat/solar dryer. Eng Life Sci 12(3):321–326

    Article  CAS  Google Scholar 

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer, Singapore, p 541

    Book  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizo biumjaponicum and arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223. https://doi.org/10.1007/s10725-017-0334-8

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020a) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164. https://doi.org/10.1016/j.geoderma.2019.114164

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752. https://doi.org/10.1016/j.catena.2020.104752

    Article  CAS  Google Scholar 

  • Meixner K, Fuchs W, Valkova T, Svardal K, Loderer C, Neureiter M, Drosg B (2015) Effect of precipitating agents on centrifugation and ultrafiltration performance of thin stillage digestate. Sep Purif Technol 145:154–160

    Article  CAS  Google Scholar 

  • Menardo S, Gioelli F, Balsari P (2011) The methane yield of digestate: effect of organic loading rate, hydraulic retention time, and plant feeding. Bioresour Technol 102(3):2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Mishra BK, Dadhich SK (2010) Methodology of nitrogen bio-fertiliser production. J Adv Dev Res 1(1):3–6

    Google Scholar 

  • Moestedt J, Malmborg J, Nordell E (2015) Determination of methane and carbon dioxide formation rate constants for semi-continuously fed anaerobic digesters. Energies 8(1):645–655

    Article  CAS  Google Scholar 

  • Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12(3):242–257

    Article  CAS  Google Scholar 

  • Möller K, Schultheiß U (2015) Chemical characterization of commercial organic fertilizers. Arch Agron Soil Sci 61(7):989–1012

    Article  CAS  Google Scholar 

  • Möller K, Stinner W, Leithold G (2008) Growth, composition, biological N2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk. Nutr Cycl Agroecosyst 82(3):233

    Article  CAS  Google Scholar 

  • Monfet E, Aubry G, Ramirez AA (2018) Nutrient removal and recovery from digestate: a review of the technology. Biofuels 9(2):247–262

    Article  CAS  Google Scholar 

  • Monlau F, Sambusiti C, Ficara E, Aboulkas A, Barakat A, Carrere H (2015) New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ Sci 8(9):2600–2621

    Article  CAS  Google Scholar 

  • Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Dijkstra J (2013) Special topics—mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J Anim Sci 91(11):5070–5094

    Article  CAS  PubMed  Google Scholar 

  • Morelli J (2011) Environmental sustainability: a definition for environmental professionals. J Environ Sust 1(1):2

    Google Scholar 

  • Munir MT, Li B, Boiarkina I, Baroutian S, Yu W, Young BR (2017) Phosphate recovery from hydrothermally treated sewage sludge using struvite precipitation. Bioresour Technol 239:171–179

    Article  CAS  PubMed  Google Scholar 

  • Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102(4):3730–3739

    Article  CAS  PubMed  Google Scholar 

  • Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34(2):473–492

    Article  Google Scholar 

  • Nyberg K, Sundh I, Johansson M, Schnürer A (2004) Presence of potential ammonia oxidation (PAO) inhibiting substances in anaerobic digestion residues. Appl Soil Ecol 26(2):107–112

    Article  Google Scholar 

  • Oenema O, Tamminga S (2005) Nitrogen in global animal production and management options for improving nitrogen use efficiency. Sci China Ser C Life Sci 48(2):871–887

    CAS  Google Scholar 

  • Owamah HI (2013) Heavy metals determination and assessment in a petroleum impacted river in the Niger Delta Region of Nigeria. Albanian J Agric Sci 12(1):129

    Google Scholar 

  • Owamah HI, Dahunsi SO, Oranusi US, Alfa MI (2014) Fertilizer and sanitary quality of digestate bio-fertiliser from the co-digestion of food waste and human excreta. Waste Manag 34(4):747–752

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Pivato A (2019) Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valorizat 10(2):465–481

    Article  CAS  Google Scholar 

  • Pérez-Camacho MN, Curry R (2018) Regional assessment of bioeconomy options using the anaerobic biorefinery concept. In: Proceedings of the Institution of Civil Engineers-Waste and Resource Management (Vol. 171, No. 4). Thomas Telford Ltd., pp 104–113

    Google Scholar 

  • Pfundtner E (2002) Limits and merits of sludge utilisation–land application. In: Conference proceedings of impacts of waste management. Legislation on Biogas Technology. Tulln, pp 1–10

    Google Scholar 

  • Pitts J (2019) Digestates from food waste and lignocellulosic materials: effects on plant growth (Doctoral dissertation, University of Hawaii at Manoa)

    Google Scholar 

  • Plana PV, Noche B (2016) A review of the current digestate distribution models: storage and transport. WIT Trans Ecol Environ 202:345–357

    Article  CAS  Google Scholar 

  • Poeschl M, Ward S, Owende P (2012) Environmental impacts of biogas deployment–Part II: life cycle assessment of multiple production and utilization pathways. J Clean Prod 24:184–201

    Article  CAS  Google Scholar 

  • Pognani M, D’Imporzano G, Scaglia B, Adani F (2009) Substituting energy crops with organic fraction of municipal solid waste for biogas production at farm level: a full-scale plant study. Process Biochem 44(8):817–821

    Article  CAS  Google Scholar 

  • Qi G, Pan Z, Sugawa Y, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, Umetsu K (2018) Comparative fertilizer properties of digestates from mesophilic and thermophilic anaerobic digestion of dairy manure: focusing on plant growth promoting bacteria (PGPB) and environmental risk. J Mater Cycl Waste Manage 20(3):1448–1457

    Article  CAS  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A, Meena RS (2019a) Agroforestry: a holistic approach for agricultural sustainability. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, p 606

    Google Scholar 

  • Raj A, Jhariya MK, Banerjee A, Yadav DK, Meena RS (2019b) Soil for sustainable environment and ecosystems management. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, p 606

    Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Climate change and agroforestry systems: adaptation and mitigation strategies. Apple Academic Press Inc., New York, p 383

    Book  Google Scholar 

  • Raj A, Jhariya MK, Khan N, Banerjee A, Meena RS (2021) Ecological intensification for sustainable development. In: Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Raja N (2013) Biopesticides and bio-fertilisers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestici 4:e112

    Article  Google Scholar 

  • Raposo F, De la Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sust Energ Rev 16(1):861–877

    Article  CAS  Google Scholar 

  • Raturi AK (2016) Renewables 2016 Global status report

    Google Scholar 

  • Rehl T, Müller J (2011) Life cycle assessment of biogas digestate processing technologies. Resour Conserv Recycl 56(1):92–104

    Article  Google Scholar 

  • REN21 (2011) Renewables 2011 global status report. REN21 Secretariat

    Google Scholar 

  • REN21 (2016) Global status report. Paris, 2016

    Google Scholar 

  • Rigby H, Smith SR (2011) New markets for digestate from anaerobic digestion. WRAP Report: ISS001-001

    Google Scholar 

  • Risberg K (2015) Quality and function of anaerobic digestion residues (Vol. 2015, No. 40)

    Google Scholar 

  • Romaniuk R, Giuffré L, Costantini A, Nannipieri P (2011) Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecol Indic 11(5):1345–1353

    Article  CAS  Google Scholar 

  • Sahlström L, Bagge E, Emmoth E, Holmqvist A, Danielsson-Tham ML, Albihn A (2008) A laboratory study of survival of selected microorganisms after heat treatment of biowaste used in biogas plants. Bioresour Technol 99(16):7859–7865

    Article  PubMed  CAS  Google Scholar 

  • Sambusiti C, Monlau F, Ficara E, Musatti A, Rollini M, Barakat A, Malpei F (2015) Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process Technol 137:359–365

    Article  CAS  Google Scholar 

  • Santos VB, Araújo AS, Leite LF, Nunes LA, Melo WJ (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    Article  CAS  Google Scholar 

  • Satpathy P, Steinigeweg S, Cypionka H, Engelen B (2016) Different substrates and starter inocula govern microbial community structures in biogas reactors. Environ Technol 37(11):1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73

    Article  Google Scholar 

  • Seppälä M, Pyykkönen V, Väisänen A, Rintala J (2013) Biomethane production from maize and liquid cow manure–effect of share of maize, post-methanation potential and digestate characteristics. Fuel 107:209–216

    Article  CAS  Google Scholar 

  • Sheoran S, Kuma S, Kumar P, Meena RS, Rakshit S (2021) Nitrogen fixation in maize: breeding opportunities. Theor Appl Genet. https://doi.org/10.1007/s00122-021-03791-5

  • Slorach PC, Jeswani HK, Cuéllar-Franca R, Azapagic A (2019) Environmental and economic implications of recovering resources from food waste in a circular economy. Sci Total Environ 693:133516

    Article  CAS  PubMed  Google Scholar 

  • Sommer SG, Husted S (1995) A simple model of pH in slurry. J Agric Sci 124(3):447–453

    Article  Google Scholar 

  • Stambasky J, Pflüger S, Deremince B, Scheidl S, de la Vega N, Conton M (2016) Annual statistical report of the European biogas association. European Biogas Association, Brussels

    Google Scholar 

  • Statistics RC (2016) International renewable energy agency (IRENA)

    Google Scholar 

  • Steffen R, Szolar O, Braun R (1998) Feedstocks for anaerobic digestion. Institute of Agrobiotechnology Tulin, University of Agricultural Sciences, Vienna

    Google Scholar 

  • Stiles WA, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Chaloner T (2018) Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour Technol 267:732–742

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre B, Wright ADG (2014) Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Appl Microbiol Biotechnol 98(6):2709–2717

    Article  CAS  PubMed  Google Scholar 

  • Stronach SM, Rudd T, Lester JN (2012) Anaerobic digestion processes in industrial wastewater treatment, vol 2. Springer, New York

    Google Scholar 

  • Sujanya S, Chandra S (2011) Effect of part replacement of chemical fertilizers with organic and bio-organic agents in ground nut, Arachis hypogea. J Algal Biomass Util 2(4):38–40

    Google Scholar 

  • Sullivan TS, Stromberger ME, Paschke MW, Ippolito JA (2006) Long-term impacts of infrequent biosolids applications on chemical and microbial properties of a semi-arid rangeland soil. Biol Fertil Soils 42(3):258–266

    Article  CAS  Google Scholar 

  • Sun L, Pope PB, Eijsink VG, Schnürer A (2015) Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol 8(5):815–827

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626

    Article  CAS  PubMed  Google Scholar 

  • Surendra KC, Takara D, Hashimoto AG, Khanal SK (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew Sust Energ Rev 31:846–859

    Article  Google Scholar 

  • Tambone F, Scaglia B, D’Imporzano G, Schievano A, Orzi V, Salati S, Adani F (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81(5):577–583

    Article  CAS  PubMed  Google Scholar 

  • Tampio E, Marttinen S, Rintala J (2016) Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. J Clean Prod 125:22–32

    Article  CAS  Google Scholar 

  • Tiwari VN, Tiwari KN, Upadhyay RM (2000) Effect of crop residues and biogas slurry incorporation in wheat on yield and soil fertility. J Indian Soc Soil Sci 48(3):515–520

    Google Scholar 

  • Topper PA, Graves RE, Richard T (2006) The fate of nutrients and pathogens during anaerobic digestion of dairy manure. Pennsylvania State, Department of Agricultural and Biological Engineering G, 71

    Google Scholar 

  • Tran MT, Vu TKV, Sommer SG, Jensen LS (2011) Nitrogen turnover and loss during storage of slurry and composting of solid manure under typical Vietnamese farming conditions. J Agric Sci 149(3):285–296

    Article  CAS  Google Scholar 

  • Tsai SH, Liu CP, Yang SS (2007) Microbial conversion of food wastes for bio-fertiliser production with thermophilic lipolytic microbes. Renew Energy 32(6):904–915

    Article  CAS  Google Scholar 

  • Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    Article  CAS  PubMed  Google Scholar 

  • Vidlarova P, Heviankova S, Kyncl M (2017) Contribution to the study of ammonia removal from digestate by struvite precipitation. IOP Conf Ser 92(1):012072

    Article  Google Scholar 

  • Waeger F, Delhaye T, Fuchs W (2010) The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents. Separat Purif Tech 73(2):271–278

    Article  CAS  Google Scholar 

  • Walsh JJ, Jones DL, Edwards-Jones G, Williams AP (2012a) Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. J Plant Nutr Soil Sci 175(6):840–845

    Article  CAS  Google Scholar 

  • Walsh JJ, Rousk J, Edwards-Jones G, Jones DL, Williams AP (2012b) Fungal and bacterial growth following the application of slurry and anaerobic digestate of livestock manure to temperate pasture soils. Biol Fertil Soils 48(8):889–897

    Article  Google Scholar 

  • Weiland P (2001) VDI-Berichte Nr. 1620, Grundlagen der Methangärung-Biologie und Substrate (Basics of methane fermentation-Biology and substrates). Biogas als regenerative Energie-Stand und Perspektiven, Hannover, Germany, pp 19–20

    Google Scholar 

  • Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109(1-3):263–274

    Article  CAS  PubMed  Google Scholar 

  • Wellinger A, Murphy JD, Baxter D (eds) (2013) The biogas handbook: science, production and applications. Elsevier, London

    Google Scholar 

  • Wentzel S, Joergensen RG (2016) Effects of biogas and raw slurries on grass growth and soil microbial indices. J Plant Nutr Soil Sci 179(2):215–222

    Article  CAS  Google Scholar 

  • Westerholm M, Schnürer A (2019) Microbial responses to different operating practices for biogas production systems [working title]

    Google Scholar 

  • Wienhold BJ, Andrews SS, Karlen DL (2004) Soil quality: a review of the science and experiences in the USA. Environ Geochem Health 26(2):89–95

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson KG (2011) A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass Bioenergy 35(5):1613–1622

    Article  Google Scholar 

  • WRAP (2010) Final report: waste arisings in the supply of food and drink to households in the UK, March, 2010

    Google Scholar 

  • WRAP (2012) Enhancement and treatment of digestates from anaerobic digestion, desk top study on digestate enhancement and treatment. Pell Frischmann Consultants Ltd, London

    Google Scholar 

  • Yun YS, Park JI, Suh MS, Park JM (2000) Treatment of food wastes using slurry-phase decomposition. Bioresour Technol 73(1):21–27

    Article  CAS  Google Scholar 

  • Zakrzewski M, Goesmann A, Jaenicke S, Jünemann S, Eikmeyer F, Szczepanowski R, Schlüter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158(4):248–258

    Article  CAS  PubMed  Google Scholar 

  • Zang W, Han DY, Dick WA, Davis KR, Hoitink HAJ (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and arabidopsis. Phytopathology 88:450e5

    Google Scholar 

  • Zeng Y, De Guardia A, Dabert P (2016) Improving composting as a post-treatment of anaerobic digestate. Bioresour Technol 201:293–303

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li N, Dai X, Tao W, Jenkinson IR, Li Z (2018) Enhanced dewater ability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: new insights through structure evolution. Water Res 131:177–185

    Article  CAS  PubMed  Google Scholar 

  • Zhu HN, Yuan XZ, Zeng GM, Jiang M, Liang J, Zhang C, Jiang HW (2012) Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Trans Nonferrous Metals Soc China 22(6):1470–1477

    Article  CAS  Google Scholar 

  • Zirkler D, Peters A, Kaupenjohann M (2014) Elemental composition of biogas residues: Variability and alteration during anaerobic digestion. Biomass Bioenergy 67:89–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Badshah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akbar, S., Ahmed, S., Khan, S., Badshah, M. (2021). Anaerobic Digestate: A Sustainable Source of Bio-fertilizer. In: Jhariya, M.K., Banerjee, A., Meena, R.S., Kumar, S., Raj, A. (eds) Sustainable Intensification for Agroecosystem Services and Management . Springer, Singapore. https://doi.org/10.1007/978-981-16-3207-5_15

Download citation

Publish with us

Policies and ethics