Skip to main content

Disease Diagnosis System for IoT-Based Wearable Body Sensors with Machine Learning Algorithm

  • Chapter
  • First Online:
Hybrid Artificial Intelligence and IoT in Healthcare

Abstract

In recent years, the continuous growth in global infectious disease coupled with population growth and the associated increase in expectancy lead to the search for new ways of making the most use of limited resources. Automated disease monitoring, diagnosis, prediction, and treatment of patients are not only for fast data but also to get reliable service at reduced cost and accurate results from medical experts. The combined wearable devices and Internet of Things (IoT) have been reformed the medical system. This has minimized the response time in monitoring, diagnosis, prediction, and treatment by thrives toward the omnipresence of the healthcare services. However, the integration and design of IoT-based wearable sensors present many challenges especially in the areas of data exchange, monitoring, and diagnosing of patients. Therefore, the chapter proposes a framework for IoT-WBN-based with a machine learning algorithm (ML). The data collected from different wearable sensors like body temperature, glucose sensors, heartbeat sensors, and chest were transmitted through IoT devices to the integrated cloud database. To select the most useful features from the capture data, the ML was used, and the sensor signal is analyzed using ML for diagnosis of patient data. The proposed framework can be widely used in a remote area to monitor and diagnose patient health conditions to reduce, and eliminate medical faults, reduce healthcare costs, minimize pressure on medical experts, increase productivity, and enhancing patient satisfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, P. M., Lokesh, S., Varatharajan, R., Babu, G. C., & Parthasarathy, P. (2018). Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Generation Computer Systems, 86, 527–534.

    Article  Google Scholar 

  2. Yuehong, Y. I. N., Zeng, Y., Chen, X., & Fan, Y. (2016). The internet of things in healthcare: An overview. Journal of Industrial Information Integration, 1, 3–13.

    Article  Google Scholar 

  3. Firouzi, F., Rahmani, A. M., Mankodiya, K., Badaroglu, M., Merrett, G. V., Wong, P., & Farahani, B. (2018). Internet-of-Things and big data for smarter healthcare: From device to architecture, applications, and analytics.

    Google Scholar 

  4. Peterson, T., Rice, J., & Valane, J. (2005). Solar tracker (p. 476). ECE: Final Project in Cornell University.

    Google Scholar 

  5. Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine, 9(3), 337–344.

    Article  Google Scholar 

  6. Lorincz, K., Malan, D. J., Fulford-Jones, T. R., Nawoj, A., Clavel, A., Shnayder, V., Mainland, G., Welsh, M., & Moulton, S. (2004). Sensor networks for emergency response: Challenges and opportunities. IEEE pervasive Computing, 3(4), 16–23.

    Google Scholar 

  7. Pramanik, P. K. D., Upadhyaya, B. K., Pal, S., & Pal, T. (2019). Internet of things, smart sensors, and pervasive systems: Enabling connected and pervasive healthcare. In Healthcare Data Analytics and Management (pp. 1–58). Academic Press.

    Google Scholar 

  8. Srivastava, G., Parizi, R. M., & Dehghantanha, A. (2020). The future of blockchain technology in healthcare internet of things security. In Blockchain Cybersecurity, Trust and Privacy (pp. 161–184). Springer, Cham.

    Google Scholar 

  9. Oladipo, I. D., Babatunde, A. O., Awotunde, J. B., & Abdulraheem, M. (2021). An improved hybridization in the diagnosis of diabetes mellitus using selected computational intelligence. Communications in Computer and Information Science, 1350, 272–285.

    Google Scholar 

  10. Darwish, A., Ismail Sayed, G., & Ella Hassanien, A. (2019). The impact of implantable sensors in biomedical technology on the future of healthcare systems. Intelligent Pervasive Computing Systems for Smarter Healthcare, 67–89.

    Google Scholar 

  11. Joyia, G. J., Liaqat, R. M., Farooq, A., & Rehman, S. (2017). Internet of Medical Things (IOMT): Applications, benefits, and future challenges in the healthcare domain. The Journal of Communication, 12(4), 240–247.

    Google Scholar 

  12. Adeniyi, E. A., Ogundokun, R. O., & Awotunde, J. B. (2021). IoMT-based wearable body sensors network healthcare monitoring system. In IoT in Healthcare and Ambient Assisted Living (pp. 103–121). Springer, Singapore.

    Google Scholar 

  13. Qadri, Y. A., Nauman, A., Zikria, Y. B., Vasilakos, A. V., & Kim, S. W. (2020). The future of healthcare internet of things: A survey of emerging technologies. IEEE Communications Surveys & Tutorials, 22(2), 1121–1167.

    Article  Google Scholar 

  14. Alharthi, N., & Gutub, A. (2017). Data visualization to explore improving decision-making within Hajj services. Scientific Modeling and Research, 2(1), 9–18.

    Article  Google Scholar 

  15. Sebestyen, G., Hangan, A., Oniga, S., & Gál, Z. (2014, May). eHealth solutions in the context of the internet of things. In 2014 IEEE International Conference on Automation, Quality, and Testing, Robotics (pp. 1–6). IEEE.

    Google Scholar 

  16. Rahmani, A. M., Thanigaivelan, N. K., Gia, T. N., Granados, J., Negash, B., Liljeberg, P., & Tenhunen, H. (2015, January). Smart e-health gateway: Bringing intelligence to internet-of-things based ubiquitous healthcare systems. In 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC) (pp. 826–834). IEEE.

    Google Scholar 

  17. Woo, M. W., Lee, J., & Park, K. (2018). A reliable IoT system for personal healthcare devices. Future Generation Computer Systems, 78, 626–640.

    Article  Google Scholar 

  18. Ogundokun, R. O., & Awotunde, J. B. (2020). Machine learning prediction for COVID-19 pandemic in India. medRxiv.

    Google Scholar 

  19. Jan, M. A., Usman, M., He, X., & Rehman, A. U. (2018). SAMS: A seamless and authorized multimedia streaming framework for WMSN-based IoMT. IEEE Internet of Things Journal, 6(2), 1576–1583.

    Article  Google Scholar 

  20. Qureshi, F., & Krishnan, S. (2018). Wearable hardware design for the internet of medical things (IoMT). Sensors, 18(11), 3812.

    Article  Google Scholar 

  21. Ng, J. W., Lo, B. P., Wells, O., Sloman, M., Peters, N., Darzi, A., Toumazou, C., & Yang, G. Z. (2004, September). Ubiquitous monitoring environment for wearable and implantable sensors (UbiMon). In International Conference on Ubiquitous Computing (Ubicomp).

    Google Scholar 

  22. Connelly, K., Mayora, O., Favela, J., Jacobs, M., Matic, A., Nugent, C., & Wagner, S. (2017). The future of pervasive health. IEEE Pervasive Computing, 16(1), 16–20.

    Article  Google Scholar 

  23. Kutia, S., Chauhdary, S. H., Iwendi, C., Liu, L., Yong, W., & Bashir, A. K. (2019). Socio-technological factors affecting user’s adoption of eHealth functionalities: A case study of China and Ukraine eHealth systems. IEEE Access, 7, 90777–90788.

    Article  Google Scholar 

  24. Minerva, R., Biru, A., & Rotondi, D. (2015). Toward a definition of the internet of things (IoT). IEEE Internet Initiative, 1(1), 1–86.

    Google Scholar 

  25. Zahoor, S., & Mir, R. N. (2018). Resource management in pervasive internet of things: A survey. Journal of King Saud University-Computer and Information Sciences.

    Google Scholar 

  26. Hommersom, A., Lucas, P. J., Velikova, M., Dal, G., Bastos, J., Rodriguez, J., Germs, M., & Schwietert, H. (2013, October). Moshca-my mobile and smart health care assistant. In 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013) (pp. 188–192). IEEE.

    Google Scholar 

  27. Ayo, F. E., Awotunde, J. B., Ogundokun, R. O., Folorunso, S. O., & Adekunle, A. O. (2020). A decision support system for multi-target disease diagnosis: A bioinformatics approach. Heliyon, 6(3), e03657.

    Article  Google Scholar 

  28. Ayo, F. E., Ogundokun, R. O., Awotunde, J. B., Adebiyi, M. O., & Adeniyi, A. E. (2020, July). Severe acne skin disease: A fuzzy-based method for diagnosis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, 12254 LNCS, pp. 320–334.

    Google Scholar 

  29. Oladele, T. O., Ogundokun, R. O., Awotunde, J. B., Adebiyi, M. O., & Adeniyi, J. K. (2020, July). Diagmal: A malaria coactive neuro-fuzzy expert system. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, 12254 LNCS, pp. 428–441.

    Google Scholar 

  30. Awotunde, J. B., Jimoh, R. G., Oladipo, I. D., & Abdulraheem, M. (2021). Prediction of malaria fever using long-short-term memory and big data. Communications in Computer and Information Science, 1350, 41–53.

    Google Scholar 

  31. Oniani, S., Marques, G., Barnovi, S., Pires, I. M., & Bhoi, A. K. (2020). Artificial Intelligence for the Internet of Things and Enhanced Medical Systems. Studies in Computational Intelligence, 2021(903), 43–59.

    Google Scholar 

  32. Gravina, R., Alinia, P., Ghasemzadeh, H., & Fortino, G. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Information Fusion, 35, 68–80.

    Article  Google Scholar 

  33. Yadav, A., Kumar Singh, V., Kumar Bhoi, A., Marques, G., Garcia-Zapirain, B., & de la Torre Díez, I. (2020). Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems. Micromachines, 11(6), 558.

    Article  Google Scholar 

  34. Sodhro, A. H., Zongwei, L., Pirbhulal, S., Sangaiah, A. K., Lohano, S., & Sodhro, G. H. (2020). Power-management strategies for medical information transmission in wireless body sensor networks. IEEE Consumer Electronics Magazine, 9(2), 47–51.

    Google Scholar 

  35. Popoola, S. I., Popoola, O. A., Oluwaranti, A. I., Atayero, A. A., Badejo, J. A., & Misra, S. (2017, October). A cloud-based intelligent toll collection system for smart cities. In International Conference on Next-generation Computing Technologies (pp. 653–663). Springer, Singapore.

    Google Scholar 

  36. Awotunde, J. B., Adeniyi, A. E., Ogundokun, R. O., Ajamu, G. J., & Adebayo, P. O. (2021). MIoT-based big data analytics architecture, opportunities and challenges for enhanced telemedicine systems. Studies in Fuzziness and Soft Computing, 410, 199–220.

    Google Scholar 

  37. Samuel, V., Adewumi, A., Dada, B., Omoregbe, N., Misra, S., & Odusami, M. (2019). Design and development of a cloud-based electronic medical records (EMR) system. In Data, Engineering, and Applications (pp. 25–31). Springer, Singapore.

    Google Scholar 

  38. Venugopal, K. R., & Kumaraswamy, M. (2020). An introduction to QoS in wireless sensor networks. In QoS Routing Algorithms for Wireless Sensor Networks (pp. 1–21). Springer, Singapore.

    Google Scholar 

  39. Fortino, G., Galzarano, S., Gravina, R., & Li, W. (2015). A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Information Fusion, 22, 50–70.

    Article  Google Scholar 

  40. Kumar Behera, R., Kumar Rath, S., Misra, S., Damaševičius, R., & Maskeliūnas, R. (2019). Distributed centrality analysis of social network data using MapReduce. Algorithms, 12(8), 161.

    Article  Google Scholar 

  41. Ajayi, P., Omoregbe, N., Misra, S., & Adeloye, D. (2017). Evaluation of a cloud-based health information system. In Innovation and Interdisciplinary Solutions for Underserved Areas (pp. 165–176). Springer, Cham.

    Google Scholar 

  42. Panigrahy, S. K., Dash, B. P., Korra, S. B., Turuk, A. K., & Jena, S. K. (2019). Comparative study of ECG-based key agreement schemes in wireless body sensor networks. Recent Findings in Intelligent Computing Techniques (pp. 151–161). Springer, Singapore.

    Google Scholar 

  43. Velez, F. J., Chávez-Santiago, R., Borges, L. M., Barroca, N., Balasingham, I., & Derogarian, F. (2019). Scenarios and applications for wearable technologies and WBSNs with energy harvesting. Wearable Technologies and Wireless Body Sensor Networks for Healthcare, 11, 31.

    Article  Google Scholar 

  44. Smith, J. R., Joyner, M. J., Curry, T. B., Borlaug, B. A., Keller-Ross, M. L., Van Iterson, E. H., & Olson, T. P. (2020). Locomotor muscle group III/IV afferents constrain stroke volume and contribute to exercise intolerance in human heart failure. The Journal of Physiology, 598(23), 5379–5390.

    Article  Google Scholar 

  45. Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., Ahmed, M., Aksut, B., & Alla, F. (2017). Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1–25.

    Google Scholar 

  46. Björnson, E., Borén, J., & Mardinoglu, A. (2016). Personalized cardiovascular disease prediction and treatment—A review of existing strategies and novel systems medicine tools. Frontiers in Physiology, 7, 2.

    Article  Google Scholar 

  47. Yasnitsky, L. N., Dumler, A. A., Poleshchuk, A. N., Bogdanov, C. V., & Cherepanov, F. M. (2015). Artificial neural networks for obtaining new medical knowledge: Diagnostics and prediction of cardiovascular disease progression. Biology and Medicine (Aligarh), 7(2), BM.

    Google Scholar 

  48. Alamri, A. (2019, January). Big data with integrated cloud computing for prediction of health conditions. In 2019 International Conference on Platform Technology and Service (PlatCon) (pp. 1–6). IEEE.

    Google Scholar 

  49. Bhatia, M., & Sood, S. K. (2017). A comprehensive health assessment framework to facilitate IoT-assisted smart workouts: A predictive healthcare perspective. Computers in Industry, 92, 50–66.

    Article  Google Scholar 

  50. Kalantari, A., Kamsin, A., Shamshirband, S., Gani, A., Alinejad-Rokny, H., & Chronopoulos, A. T. (2018). Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges, and research directions. Neurocomputing, 276, 2–22.

    Article  Google Scholar 

  51. De Rosa, R., Palmerini, T., De Servi, S., Belmonte, M., Crimi, G., Cornara, S., Maffeo, D., Toso, A., & Bartorelli, A. (2018). High on-treatment platelet reactivity and outcome in elderly with non-ST-segment elevation acute coronary syndrome-Insight from the GEPRESS study. International Journal of Cardiology259, 20–25.

    Google Scholar 

  52. Aggarwal, A., Srivastava, S., & Velmurugan, M. (2016). Newer perspectives of coronary artery disease in young. World journal of cardiology, 8(12), 728.

    Article  Google Scholar 

  53. Mendis, S., Puska, P., Norrving, B., & World Health Organization. (2011). Global atlas on cardiovascular disease prevention and control. World Health Organization.

    Google Scholar 

  54. Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J., Sandhu, S., Guppy, K., Lee, S., & Froelicher, V. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology, 64, 304–310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awotunde, J., Folorunso, S.O., Bhoi, A.K., Adebayo, P.O., Ijaz, M.F. (2021). Disease Diagnosis System for IoT-Based Wearable Body Sensors with Machine Learning Algorithm. In: Kumar Bhoi, A., Mallick, P.K., Narayana Mohanty, M., Albuquerque, V.H.C.d. (eds) Hybrid Artificial Intelligence and IoT in Healthcare. Intelligent Systems Reference Library, vol 209. Springer, Singapore. https://doi.org/10.1007/978-981-16-2972-3_10

Download citation

Publish with us

Policies and ethics