Skip to main content

Hybrid Cloud/Fog Environment for Healthcare: An Exploratory Study, Opportunities, Challenges, and Future Prospects

  • Chapter
  • First Online:
Hybrid Artificial Intelligence and IoT in Healthcare

Abstract

The healthcare system has been on the frontline in recent years, and new technologies have greatly benefited healthcare. Researchers have tried to find solutions to different problems associated with the healthcare system by applied various modern technologies approaches. Among the various technologies, are fog and computing used in smart healthcare systems. These applications with the Internet of things (IoT) recently have help in dispersed patient data globally and have advanced healthcare systems. Hence, various applications and solutions using cloud computing have been proposed by researchers to manage healthcare statistics. However, the issues of latency, context-awareness, and a huge volume of data are remaining challenges in cloud computing. Hence, the possibility of transmission errors and the probability of delay in data processing remain a problem as healthcare datasets become more complex and larger. The most alternative solution to those challenges is fog computing in reducing data management complexity in the healthcare system, thus increasing reliability. But, before using fog computing, it is very essential to look into its associated challenges in other to manage healthcare data effectively. Therefore, this chapter discusses the areas of applicability in healthcare systems of hybrid cloud/fog computing. The several extraordinary opportunities brought by the technologies in the healthcare system with research challenges in deployment are discussed. The applications of fog in IoT-based devices bring healthcare components in a distant cloud operating nearer to data sources and the end-users, thus, resulting in context-awareness and lower latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaur, P. D., & Chana, I. (2014). Cloud-based intelligent system for delivering health care as a service. Computer Methods and Programs in Biomedicine, 113(1), 346–359.

    Article  Google Scholar 

  2. Fichman, R. G., Kohli, R., & Krishnan, R. (Eds.). (2011). Editorial overview—the role of information systems in healthcare: Current research and future trends. Information Systems Research, 22(3), 419–428.

    Google Scholar 

  3. Usak, M., Kubiatko, M., Shabbir, M. S., Viktorovna Dudnik, O., Jermsittiparsert, K., & Rajabion, L. (2020). Health care service delivery based on the Internet of Things: A systematic and comprehensive study. International Journal of Communication Systems, 33(2), e4179.

    Article  Google Scholar 

  4. Abimbola, S., Keelan, S., Everett, M., Casburn, K., Mitchell, M., Burchfield, K., & Martiniuk, A. (2019). The medium, the message, and the measure: A theory-driven review on the value of telehealth as a patient-facing digital health innovation. Health Economics Review, 9(1), 21.

    Article  Google Scholar 

  5. Adeniyi, E. A., Ogundokun, R. O., & Awotunde, J. B. (2021). IoMT-based wearable body sensors network healthcare monitoring system. In IoT in healthcare and ambient assisted living (pp. 103–121). Springer.

    Google Scholar 

  6. Romanow, D., Cho, S., & Straub, D. (2012). Editor's comments: Riding the wave: Past trends and future directions for health IT research. MIS quarterly, iii–x.

    Google Scholar 

  7. Nandyala, C. S., & Kim, H. K. (2016). From cloud to fog and IoT-based real-time U-healthcare monitoring for smart homes and hospitals. International Journal of Smart Home, 10(2), 187–196.

    Article  Google Scholar 

  8. Palumbo, F., Barsocchi, P., Furfari, F., & Ferro, E. (2013). AAL middleware infrastructure for green bed activity monitoring. Journal of Sensors.

    Google Scholar 

  9. Saad, M. (2018). Fog computing and its role in the Internet of Things: Concept, security and privacy issues. International Journal of Computers and Applications, 975, 8887.

    Google Scholar 

  10. Bonomi, F. (2011, September). Connected vehicles, the internet of things, and fog computing. In The Eighth ACM International Workshop on Vehicular Inter-Networking (VANET), Las Vegas, USA (pp. 13–15).

    Google Scholar 

  11. Yadav, A., Kumar Singh, V., Kumar Bhoi, A., Marques, G., Garcia-Zapirain, B., & de la Torre Díez, I. (2020). Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems. Micromachines, 11(6), 558.

    Google Scholar 

  12. Awotunde, J. B., Adeniyi, A. E., Ogundokun, R. O., Ajamu, G. J., & Adebayo, P. O. (2021). MIoT-Based Big Data Analytics Architecture, Opportunities and Challenges for Enhanced Telemedicine Systems. Studies in Fuzziness and Soft Computing, 2021, 410, pp. 199–220.

    Google Scholar 

  13. Marques, G., Miranda, N., Kumar Bhoi, A., Garcia-Zapirain, B., Hamrioui, S., & de la Torre Díez, I. (2020). Internet of Things and enhanced living environments: Measuring and mapping air quality using cyber-physical systems and mobile computing technologies. Sensors, 20(3), 720.

    Google Scholar 

  14. Rajabion, L., Shaltooki, A. A., Taghikhah, M., Ghasemi, A., & Badfar, A. (2019). Healthcare broad data analysis techniques: The role of cloud services. International Journal of Management of Intelligence, 49, 271–289.

    Google Scholar 

  15. Ali, O., Shrestha, A., Soar, J., & Wamba, S. F. (2018). Cloud computing-enabled healthcare opportunities, issues, and applications: A systematic review. International Journal of Information Management, 43, 146–158.

    Article  Google Scholar 

  16. Palanisamy, V., & Thirunavukarasu, R. (2019). Implications of big data analytics in developing healthcare frameworks—A review. Journal of King Saud University-Computer and Information Sciences, 31(4), 415–425.

    Article  Google Scholar 

  17. Aceto, G., Persico, V., & Pescapé, A. (2018). The role of information and communication technologies in healthcare: Taxonomies, perspectives, and challenges. Journal of Network and Computer Applications, 107, 125–154.

    Article  Google Scholar 

  18. Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: Management, analysis, and prospects. Journal of Big Data, 6(1), 54.

    Article  Google Scholar 

  19. Ali, O., Soar, J., & Shrestha, A. (2018). Perceived potential for value creation from cloud computing: A study of the Australian regional government sector. Behaviour and Information Technology, 37(12), 1157–1176.

    Article  Google Scholar 

  20. Senyo, P. K., Addae, E., & Boateng, R. (2018). Cloud computing research: A review of research themes, frameworks, methods, and future research directions. International Journal of Information Management, 38(1), 128–139.

    Article  Google Scholar 

  21. Oniani, S., Marques, G., Barnovi, S., Pires, I. M., & Bhoi, A. K. (2021). Artificial intelligence for Internet of Things and enhanced medical systems. In Bio-inspired neurocomputing (pp. 43–59). Springer.

    Google Scholar 

  22. Bayramusta, M., & Nasir, V. A. (2016). A fad or future of IT? A comprehensive literature review on cloud computing research. International Journal of Information Management, 36(4), 635–644.

    Article  Google Scholar 

  23. Ahuja, S. P., Mani, S., & Zambrano, J. (2012). A survey of the state of cloud computing in healthcare. Network and Communication Technologies, 1(2), 12.

    Google Scholar 

  24. Abdulraheem, M., Awotunde, J. B., Jimoh, R. G., & Oladipo, I. D. (2021). An Efficient Lightweight Cryptographic Algorithm for IoT Security. Communications in Computer and Information Science, 2021, 1350, pp. 41–53.

    Google Scholar 

  25. Culyer, A. J., & Chalkidou, K. (2019). Economic evaluation for health investments En route to universal health coverage: Cost-benefit analysis or cost-effectiveness analysis? Value in Health, 22(1), 99–103.

    Article  Google Scholar 

  26. Elavarasan, R. M., & Pugazhendhi, R. (2020). Restructured society and environment: A review on potential technological strategies to control the COVID-19 pandemic. Science of the Total Environment, 138858.

    Google Scholar 

  27. Mora, N., Grossi, F., Russo, D., Barsocchi, P., Hu, R., Brunschwiler, T., Ciampolini, P., et al. (2019). IoT-based home monitoring: supporting practitioners’ assessment by behavioral analysis. Sensors, 19(14), 3238.

    Google Scholar 

  28. Venkatesh, V., Rai, A., Sykes, T. A., & Aljafari, R. (2016). Combating infant mortality in rural India: Evidence from a field study of eHealth kiosk implementations. MIS Quarterly, 40(2), 353–380.

    Article  Google Scholar 

  29. Koufi, V., Malamateniou, F., & Vassilacopoulos, G. (2010, November). Ubiquitous access to cloud emergency medical services. In Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (pp. 1–4). IEEE.

    Google Scholar 

  30. Sharma, M., & Sehrawat, R. (2020). A hybrid multi-criteria decision-making method for cloud adoption: Evidence from the healthcare sector. Technology in Society, 101258.

    Google Scholar 

  31. Seth, B., Dalal, S., & Kumar, R. (2019). Securing bioinformatics cloud for big data: budding buzzword or a glance of the future. In Recent advances in computational intelligence (pp. 121–147). Springer.

    Google Scholar 

  32. Aceto, G., Persico, V., & Pescapé, A. (2020). Industry 4.0 and health: Internet of Things, big data, and cloud computing for healthcare 4.0. Journal of Industrial Information Integration, 18, 100129.

    Google Scholar 

  33. Calabrese, B., & Cannataro, M. (2015). Cloud computing in healthcare and biomedicine. Scalable Computing: Practice and Experience, 16(1), 1–18.

    Google Scholar 

  34. Awotunde, J. B., Jimoh, R. G., Oladipo, I. D., & Abdulraheem, M. (2021). Prediction of Malaria Fever Using Long-Short-Term Memory and Big Data. Communications in Computer and Information Science, 2021, 1350, pp. 41–53.

    Google Scholar 

  35. Navale, V., & Bourne, P. E. (2018). Cloud computing applications for biomedical science: A perspective. PLoS Computational Biology, 14(6), e1006144.

    Article  Google Scholar 

  36. Jin, Z., & Chen, Y. (2015). Telemedicine in the cloud era: Prospects and challenges. IEEE Pervasive Computing, 14(1), 54–61.

    Article  Google Scholar 

  37. Sundwall, D. N., Munger, M. A., Tak, C. R., Walsh, M., & Feehan, M. (2020). Lifetime prevalence and correlates of patient-perceived medical errors experienced in the US ambulatory setting: A population-based study. Health Equity, 4(1), 430–437.

    Article  Google Scholar 

  38. Maduravoyal, C. (2018). Patient-controlled personal health record enforcing patient privacy in the cloud-based healthcare system. International Journal of Pure and Applied Mathematics, 119(10), 375–392.

    Google Scholar 

  39. Sahoo, P. K., Mohapatra, S. K., & Wu, S. L. (2018). SLA based healthcare big data analysis and computing in a cloud network. Journal of Parallel and Distributed Computing, 119, 121–135.

    Article  Google Scholar 

  40. Regola, N., & Chawla, N. V. (2013). Storing and using health data in a virtual private cloud. Journal of Medical Internet Research, 15(3), e63.

    Article  Google Scholar 

  41. Abatal, A., Khallouki, H., & Bahaj, M. (2018, April). A semantic smart interconnected healthcare system using ontology and cloud computing. In 2018 4th International Conference on Optimization and Applications (ICOA) (pp. 1–5). IEEE.

    Google Scholar 

  42. Schweitzer, E. J. (2012). Reconciliation of the cloud computing model with US federal electronic health record regulations. Journal of the American Medical Informatics Association, 19(2), 161–165.

    Article  Google Scholar 

  43. Chen, S. W., Chiang, D. L., Liu, C. H., Chen, T. S., Lai, F., Wang, H., & Wei, W. (2016). Confidentiality protection of digital health records in cloud computing. Journal of Medical Systems, 40(5), 124.

    Article  Google Scholar 

  44. Hayes, A. N. (2016). Is cloud computing in healthcare providing a safe environment for storing protected health information? A systematic review and meta-analysis.

    Google Scholar 

  45. Mizani, M. A. (2017). Cloud-based computing. In Key advances in clinical informatics (pp. 239–255). Academic Press.

    Google Scholar 

  46. Yassine, A., Singh, S., & Alamri, A. (2017). Mining human activity patterns from smart home big data for health care applications. IEEE Access, 5, 13131–13141.

    Article  Google Scholar 

  47. Ayo, F. E., Awotunde, J. B., Ogundokun, R. O., Folorunso, S. O., & Adekunle, A. O. (2020). A decision support system for multi-target disease diagnosis: A bioinformatics approach. Heliyon, 6(3), e03657.

    Article  Google Scholar 

  48. Ghanavati, S., Abawajy, J. H., Izadi, D., & Alelaiwi, A. A. (2017). Cloud-assisted IoT-based health status monitoring framework. Cluster Computing, 20(2), 1843–1853.

    Google Scholar 

  49. Oladipo, I.D., Babatunde, A.O., Awotunde, J.B., Abdulraheem, M. (2021). An Improved Hybridization in the Diagnosis of Diabetes Mellitus Using Selected Computational Intelligence. Communications in Computer and Information Science, 2021, 1350, pp. 272–285.

    Google Scholar 

  50. Rehman, H. U., Khan, A., & Habib, U. (2020). Fog computing for bioinformatics applications. In Fog computing: Theory and practice (pp. 529–546).

    Google Scholar 

  51. Devarajan, M., Subramaniyaswamy, V., Vijayakumar, V., & Ravi, L. (2019). Fog-assisted personalized healthcare-support system for remote patients with diabetes. Journal of Ambient Intelligence and Humanized Computing, 10(10), 3747–3760.

    Article  Google Scholar 

  52. Kunal, S., Saha, A., & Amin, R. (2019). An overview of cloud-fog computing: Architectures, applications with security challenges. Security and Privacy, 2(4), e72.

    Article  Google Scholar 

  53. Yi, S., Li, C., & Li, Q. (2015, June). A survey of fog computing: Concepts, applications, and issues. In Proceedings of the 2015 Workshop on Mobile Big Data (pp. 37–42).

    Google Scholar 

  54. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2017). A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Communications Surveys and Tutorials, 20(1), 416–464.

    Article  Google Scholar 

  55. Al-Khafajiy, M., Webster, L., Baker, T., & Waraich, A. (2018, June). Towards fog driven IoT healthcare: Challenges and framework of fog computing in healthcare. In Proceedings of the 2nd International Conference on Future Networks and Distributed Systems (pp. 1–7).

    Google Scholar 

  56. Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers and Electrical Engineering, 72, 1–13.

    Article  Google Scholar 

  57. Ayo, F. E., Ogundokun, R. O., Awotunde, J. B., Adebiyi, M. O., & Adeniyi, A. E. (2020, July). Severe acne skin disease: A fuzzy-based method for diagnosis. In Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 12254, pp. 320–334). LNCS.

    Google Scholar 

  58. Puthal, D., Obaidat, M. S., Nanda, P., Prasad, M., Mohanty, S. P., & Zomaya, A. Y. (2018). Secure and sustainable load balancing of edge data centers in fog computing. IEEE Communications Magazine, 56(5), 60–65.

    Article  Google Scholar 

  59. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., & Fettweis, G. (2016). 5G-enabled tactile internet. IEEE Journal on Selected Areas in Communications, 34(3), 460–473.

    Article  Google Scholar 

  60. Maier, M., Chowdhury, M., Rimal, B. P., & Van, D. P. (2016). The tactile internet: Vision, recent progress, and open challenges. IEEE Communications Magazine, 54(5), 138–145.

    Article  Google Scholar 

  61. Petrov, I., & Janevski, T. (2016, October). Design of novel 5G transport protocol. In 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM) (pp. 29–33). IEEE.

    Google Scholar 

  62. Sakr, N., Georganas, N. D., Zhao, J., & Shen, X. (2007, July). Motion and force prediction in haptic media. In 2007 IEEE International Conference on Multimedia and Expo (pp. 2242–2245). IEEE.

    Google Scholar 

  63. Marques, G., Bhoi, A. K., de Albuquerque, V. H. C., K. S., H. (Eds.). (2021). IoT in healthcare and ambient assisted living. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awotunde, J.B., Bhoi, A.K., Barsocchi, P. (2021). Hybrid Cloud/Fog Environment for Healthcare: An Exploratory Study, Opportunities, Challenges, and Future Prospects. In: Kumar Bhoi, A., Mallick, P.K., Narayana Mohanty, M., Albuquerque, V.H.C.d. (eds) Hybrid Artificial Intelligence and IoT in Healthcare. Intelligent Systems Reference Library, vol 209. Springer, Singapore. https://doi.org/10.1007/978-981-16-2972-3_1

Download citation

Publish with us

Policies and ethics