Skip to main content

Autophagic Flux Detection: Significance and Methods Involved

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1208))

Abstract

Macroautophagy is an important biological process in eukaryotic cells by which longevity proteins, misfolded proteins, and damaged organelles are degraded. The autophagy process consists of three key steps: (1) the formation of autophagosomes; (2) the fusion of the autophagosomes with lysosomes; and (3) the degradation of the contents of autolysosomes. If any of the three steps is impaired, autophagy will not be able to complete its biological function. Dysfunctional or blocked autophagy is closely involved in the pathogenesis of a variety of diseases. The accurate determination of the autophagy activity in vivo and in vitro has become a challenge in the field of autophagy research. At present, the most widely used detection method to determine autophagy activity in mammalian cells is to quantify LC3B in the cells by Western blot, or to observe the formation and changes of autophagosomes and autolysosomes by immunofluorescence and electron microscopy. However, ignoring the dynamic characteristics of autophagy and only evaluating the number of autophagosomes or the presence of LC3B cannot completely reflect the activation or a blockage of the autophagy system, and objectively analyze its real role in the occurrence and development of a disease. For example, the accumulation of autophagosomes and autolysosomes can occur through an increase in substrate to be degraded after the activation of autophagy, or it may be caused by the partial obstruction or blockage of autophagy. In this chapter, new and familiar ways to detect the autophagic flux are methodically summarized to provide researchers with a multi-angled viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MA:

3-Methyladenine

BHMT:

Betaine-homocysteine methyltransferase

FRET:

Fluorescence resonance energy transfer

GFP:

Green fluorescent proteins

LDH:

Lactate dehydrogenase

LIR:

LC3-interaction region

LRS:

LC3 recognition sequence

PB1:

Phox and Bem1

RFPs:

Red fluorescent proteins

TCA:

Trichloroacetic acid

TEM:

Transmission electron microscopy

UBA:

Ubiquitin-associated domain

References

  • Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J Pathol. 2010;221:117–24.

    Article  CAS  Google Scholar 

  • Chiang WC, Wei Y, Kuo YC, Wei S, Zhou A, Zou Z, Yehl J, Ranaghan MJ, Skepner A, Bittker JA, Perez JR, Posner BA, Levine B. High-throughput screens to identify autophagy inducers that function by disrupting Beclin 1/Bcl-2 binding. ACS Chem Biol. 2018;13:2247–60.

    Article  CAS  Google Scholar 

  • Ciechomska IA, Tolkovsky AM. Non-autophagic GFP-LC3 puncta induced by saponin and other detergents. Autophagy. 2007;3:586–90.

    Article  CAS  Google Scholar 

  • Demishtein A, Porat Z, Elazar Z, Shvets E. Applications of flow cytometry for measurement of autophagy. Methods. 2015;75:87–95.

    Article  CAS  Google Scholar 

  • du Toit A, Hofmeyr JS, Gniadek TJ, Loos B. Measuring autophagosome flux. Autophagy. 2018;14:1060–71.

    PubMed  PubMed Central  Google Scholar 

  • Engedal N, Luhr M, Szalai P, Seglen PO. Measurement of bulk autophagy by a cargo sequestration assay. Methods Mol Biol. 2019;1880:307–13.

    Article  CAS  Google Scholar 

  • Eskelinen EL, Reggiori F, Baba M, Kovacs AL, Seglen PO. Seeing is believing: the impact of electron microscopy on autophagy research. Autophagy. 2011;7:935–56.

    Article  CAS  Google Scholar 

  • Gump JM, Thorburn A. Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry. Autophagy. 2014;10:1327–34.

    Article  Google Scholar 

  • Guo S, Liang Y, Murphy SF, Huang A, Shen H, Kelly DF, Sobrado P, Sheng Z. A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications. Autophagy. 2015;11:560–72.

    Article  Google Scholar 

  • Hale CM, Cheng Q, Ortuno D, Huang M, Nojima D, Kassner PD, Wang S, Ollmann MM, Carlisle HJ. Identification of modulators of autophagic flux in an image-based high content siRNA screen. Autophagy. 2016;12:713–26.

    Article  CAS  Google Scholar 

  • Hurley JH, Nogales E. Next-generation electron microscopy in autophagy research. Curr Opin Struct Biol. 2016;41:211–6.

    Article  CAS  Google Scholar 

  • Kaizuka T, Morishita H, Hama Y, Tsukamoto S, Matsui T, Toyota Y, Kodama A, Ishihara T, Mizushima T, Mizushima N. An autophagic flux probe that releases an internal control. Mol Cell. 2016;64:835–49.

    Article  CAS  Google Scholar 

  • Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, Agarwal R, Aghi MK, Agnello M, Agostinis P, Aguilar PV, Aguirre-Ghiso J, Airoldi EM, Ait-Si-Ali S, Akematsu T, Akporiaye ET, Al-Rubeai M, Albaiceta GM, Albanese C, Albani D, Albert ML, Aldudo J, Algul H, Alirezaei M, Alloza I, Almasan A, Almonte-Beceril M, Alnemri ES, Alonso C, Altan-Bonnet N, Altieri DC, Alvarez S, Alvarez-Erviti L, Alves S, Amadoro G, Amano A, Amantini C, Ambrosio S, Amelio I, Amer AO, Amessou M, Amon A, An Z, Anania FA, Andersen SU, Andley UP, Andreadi CK, Andrieu-Abadie N, Anel A, Ann DK, Anoopkumar-Dukie S, Antonioli M, Aoki H, Apostolova N, Aquila S, Aquilano K, Araki K, Arama E, Aranda A, Araya J, Arcaro A, Arias E, Arimoto H, Ariosa AR, Armstrong JL, Arnould T, Arsov I, Asanuma K, Askanas V, Asselin E, Atarashi R, Atherton SS, Atkin JD, Attardi LD, Auberger P, Auburger G, Aurelian L, Autelli R, Avagliano L, Avantaggiati ML, Avrahami L, Awale S, Azad N, Bachetti T, Backer JM, Bae DH, Bae JS, Bae ON, Bae SH, Baehrecke EH, Baek SH, Baghdiguian S, Bagniewska-Zadworna A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222.

    Article  Google Scholar 

  • Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol. 2010;12:836–41.

    Article  CAS  Google Scholar 

  • Lin X, Li S, Zhao Y, Ma X, Zhang K, He X, Wang Z. Interaction domains of p62: a bridge between p62 and selective autophagy. DNA Cell Biol. 2013;32:220–7.

    Article  CAS  Google Scholar 

  • Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM, Ding WX. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy. 2011;7:188–204.

    Article  CAS  Google Scholar 

  • Pugsley HR. Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J Vis Exp. 2017;(125):55637.

    Google Scholar 

  • Remaut K, Oorschot V, Braeckmans K, Klumperman J, De Smedt SC. Lysosomal capturing of cytoplasmic injected nanoparticles by autophagy: an additional barrier to non viral gene delivery. J Control Release. 2014;195:29–36.

    Article  CAS  Google Scholar 

  • Seleverstov O, Phang JM, Zabirnyk O. Semiconductor nanocrystals in autophagy research: methodology improvement at nanosized scale. Methods Enzymol. 2009;452:277–96.

    Article  CAS  Google Scholar 

  • Shvets E, Fass E, Elazar Z. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy. 2008;4:621–8.

    Article  CAS  Google Scholar 

  • Tabata K, Hayashi-Nishino M, Noda T, Yamamoto A, Yoshimori T. Morphological analysis of autophagy. Methods Mol Biol. 2013;931:449–66.

    Article  CAS  Google Scholar 

  • Yao J, Qiu Y, Jia L, Zacks DN. Autophagosome immunoisolation from GFP-LC3B mouse tissue. Autophagy. 2019;15(2):341–6.

    Article  CAS  Google Scholar 

  • Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun. 2004;313:453–8.

    Article  CAS  Google Scholar 

  • Zhang J, Wang J, Ng S, Lin Q, Shen HM. Development of a novel method for quantification of autophagic protein degradation by AHA labeling. Autophagy. 2014;10:901–12.

    Article  CAS  Google Scholar 

  • Zhang Y, Mun SR, Linares JF, Ahn J, Towers CG, Ji CH, Fitzwalter BE, Holden MR, Mi W, Shi X, Moscat J, Thorburn A, Diaz-Meco MT, Kwon YT, Kutateladze TG. ZZ-dependent regulation of p62/SQSTM1 in autophagy. Nat Commun. 2018;9:4373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo-Wei Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, XW., Lv, XX., Zhou, JC., Jin, CC., Qiao, LY., Hu, ZW. (2021). Autophagic Flux Detection: Significance and Methods Involved. In: Xie, Z. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1208. Springer, Singapore. https://doi.org/10.1007/978-981-16-2830-6_9

Download citation

Publish with us

Policies and ethics