Skip to main content

BLU-GAN: Bi-directional ConvLSTM U-Net with Generative Adversarial Training for Retinal Vessel Segmentation

  • Conference paper
  • First Online:
Intelligent Computing and Block Chain (FICC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1385))

Abstract

Retinal vascular morphometry is an important biomarker of eye-related cardiovascular diseases such as diabetes and hypertension. And retinal vessel segmentation is a fundamental step in fundus image analyses and diagnoses. In recent years, deep learning based networks have achieved superior performance in medical image segmentation. However, for fine vessels or terminal branches, most existing methods tend to miss or under-segment those structures, inducing isolated breakpoints. In this paper, we proposed Bi-Directional ConvLSTM U-Net with Generative Adversarial Training (BLU-GAN), a novel deep learning model based on U-Net that generates precise predictions of retinal vessels combined with generative adversarial training. Bi-directional ConvLSTM, which can better integrate features from different scales through a coarse-to-fine memory mechanism, is employed to non-linearly combine feature maps extracted from encoding path layers and the previous decoding up-convolutional layers and to replace the simple skip-connection used in the original U-Net. Moreover, we use densely connected convolutions in certain layers to strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. Through extensive experiments, BLU-GAN has shown leading performance among the state-of-the-art methods on the DRIVE, STARE, CHASE_DB1 datasets for retinal vessel segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatziralli, I.P., Kanonidou, E.D., Keryttopoulos, P., Dimitriadis, P., Papazisis, L.E.: The value of fundoscopy in general practice. Open Ophthalmol. J. 6, 4 (2012). https://doi.org/10.2174/1874364101206010004

    Article  Google Scholar 

  2. Singh, S., Tiwari, R.K.: A review on retinal vessel segmentation and classification methods. In: International Conference on Trends in Electronics and Informatics, pp. 895–900 (2019). https://doi.org/10.1109/ICOEI.2019.8862555

  3. Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46(3), 703–715 (2013). https://doi.org/10.1016/j.patcog.2012.08.009

    Article  Google Scholar 

  4. Singh, N.P., Srivastava, R.: Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput. Methods Programs Biomed. 129, 40–50 (2016). https://doi.org/10.1016/j.cmpb.2016.03.001

    Article  Google Scholar 

  5. Zhang, J., Chen, Y., Bekkers, E., Wang, M., Dashtbozorg, B., ter Haar Romeny, B.M.: Retinal vessel delineation using a brain-inspired wavelet transform and random forest. Pattern Recogn. 69, 107–123 (2017). https://doi.org/10.1016/j.patcog.2017.04.008

    Article  Google Scholar 

  6. Holbura, C., Gordan, M., Vlaicu, A., Stoian, I., Capatana, D.: Retinal vessels segmentation using supervised classifiers decisions fusion. In: IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 185–190 (2012). https://doi.org/10.1109/AQTR.2012.6237700

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv preprint arXiv:1802.06955 (2018)

  9. Zhuang, J.: LadderNet: multi-path networks based on U-Net for medical image segmentation. arXiv preprint arXiv:1810.07810 (2018)

  10. Lyu, J., Cheng, P., Tang, X.: Fundus image based retinal vessel segmentation utilizing a fast and accurate fully convolutional network. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2019. LNCS, vol. 11855, pp. 112–120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32956-3_14

    Chapter  Google Scholar 

  11. Mosinska, A., Marquez-Neila, P., Koziński, M., Fua, P.: Beyond the pixel-wise loss for topology-aware delineation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3136–3145 (2018). https://doi.org/10.1109/CVPR.2018.00331

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014). https://doi.org/10.5555/2969033.2969125

  13. Staal, J., Abrmoff, M.D., Niemeijer, M., Viergever, M.A., Van-Ginneken, B.: Ridgebased vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004). https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  14. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000). https://doi.org/10.1109/42.845178

    Article  Google Scholar 

  15. Owen, C.G., Rudnicka, A.R., Mullen, R., Barman, S.A., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest. Ophthalmol. Vis. Sci. 50(5), 2004–2010 (2009). https://doi.org/10.1167/iovs.08-3018

    Article  Google Scholar 

  16. Wang, C., Zhao, Z., Ren, Q., Xu, Y., Yu, Y.: Dense U-Net based on patch-based learning for retinal vessel segmentation. Entropy 21(2), 168 (2019). https://doi.org/10.3390/e21020168

    Article  MathSciNet  Google Scholar 

  17. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional ConvLSTM U-net with Densley connected convolutions. In: IEEE International Conference on Computer Vision Workshops (2019). https://doi.org/10.1109/ICCVW.2019.00052

  18. Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.-M.: Pyramid dilated deeper ConvLSTM for video salient object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part XI. LNCS, vol. 11215, pp. 744–760. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_44

    Chapter  Google Scholar 

  19. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: DenseNet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014)

  20. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in neural information processing systems, pp. 802–810 (2015). https://doi.org/10.5555/2969239.2969329

  21. Tetteh, G., Rempfler, M., Zimmer, C., Menze, B.H.: Deep-FExt: deep feature extraction for vessel segmentation and centerline prediction. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 344–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_40

    Chapter  Google Scholar 

  22. Wu, Y., Xia, Y., Song, Y., Zhang, Y., Cai, W.: Multiscale network followed network model for retinal vessel segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part II. LNCS, vol. 11071, pp. 119–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_14

    Chapter  Google Scholar 

  23. Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: DUNet: a deformable network for retinal vessel segmentation. Knowl.-Based Syst. 178, 149–162 (2019). https://doi.org/10.1016/j.knosys.2019.04.025

    Article  Google Scholar 

  24. Liu, B., Gu, L., Lu, F.: Unsupervised ensemble strategy for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 111–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_13

    Chapter  Google Scholar 

  25. Wang, B., Qiu, S., He, H.: Dual encoding U-Net for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10

    Chapter  Google Scholar 

  26. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging. 35(11), 2369–2380 (2016). https://doi.org/10.1109/TMI.2016.2546227

    Article  Google Scholar 

  27. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_17

    Chapter  Google Scholar 

  28. Son, J., Park, S.J., Jung, K.H.: Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv preprint arXiv:1706.09318 (2017)

Download references

Acknowledgement

This study was supported by the National Natural Science Foundation of China (62071210), the Shenzhen Basic Research Program (JCYJ20190809120205578), the National Key R&D Program of China (2017YFC0112404), and the High-level University Fund (G02236002). The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Wang or Xiaoying Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, L., Wu, J., Cheng, P., Wang, K., Tang, X. (2021). BLU-GAN: Bi-directional ConvLSTM U-Net with Generative Adversarial Training for Retinal Vessel Segmentation. In: Gao, W., et al. Intelligent Computing and Block Chain. FICC 2020. Communications in Computer and Information Science, vol 1385. Springer, Singapore. https://doi.org/10.1007/978-981-16-1160-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1160-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1159-9

  • Online ISBN: 978-981-16-1160-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics