Skip to main content

Abstract

The recent advances in “omics” technologies have impacted biological science research in many ways. This includes the realm diversity studies, physiological, biochemical, and molecular level researches to the development of breakthrough products and approaches. They are strengthening our attempts to fight with emerging diseases, global food crisis, environmental degradation, production of quality value-added products values, and in better understanding of the underlying mechanism(s) of host–pathogen interactions and stress (both biotic and abiotic) tolerance in plants and microbes. However, many of these techniques are still under refinement and resulting data need careful integration for attending meaningful conclusions. Although not a big concern, but we must be attentive to some of the biosafety measures and ethical concerns associated with these techniques, which we have tried to discuss in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez S, Naldrett MJ (2016) Plant structure and specificity-challenges and sample preparation considerations for proteomics. Adv Exp Med Biol 919:63–81

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Assmann SM, Birnbaum KD, Chen S, Dinneny JR et al (2019) Directions for research and training in plant omics: big questions and big data. Plant Direct 3(4):e00133

    Article  PubMed  PubMed Central  Google Scholar 

  • Badji A, Kwemoi DB, Machida L, Okii D, Mwila N et al (2020) Genetic basis of maize resistance to multiple insect pests: integrated genome-wide comparative mapping and candidate gene prioritization. Genes 11(6):689

    Article  CAS  PubMed Central  Google Scholar 

  • Barah P, Bones AM (2015) Multidimensional approaches for studying plant defense against insects: from ecology to omics and synthetic biology. J Exp Bot 66:479–493

    Article  CAS  PubMed  Google Scholar 

  • Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK et al (2018) Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 14(11):152

    Article  PubMed  CAS  Google Scholar 

  • Bhadauria V (2016) OMICS in plant disease resistance. Mol Biol 19:1–2

    Google Scholar 

  • Breitling R (2010) What is systems biology? Front Physiol 1:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Budzinski IGF, de Moraes FE, Cataldi TR, Franceschini LM, Labate CA (2019) Network analyses and data integration of proteomics and metabolomics from leaves of two contrasting varieties of sugarcane in response to drought. Front Plant Sci 10:1524

    Article  PubMed  PubMed Central  Google Scholar 

  • Buesen R, Chorley BN, da Silva Lima B, Daston G, Deferme L et al (2017) Applying omics technologies in chemicals risk assessment: report of an ECETOC workshop. Regul Toxicol Pharmacol 91(Suppl 1):S3–S13

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrï Re SB, Verdenaud M, Gough C, Gouzy JRM, Gamas P (2020) LeGOO: An expertized knowledge database for the model legume Medicago truncatula. Plant Cell Physiol 61(1):203–211

    Article  PubMed  CAS  Google Scholar 

  • Chandra A, Roopendra K, Verma I (2019) Transcriptome analysis of the effect of GA3 in sugarcane culm. 3 Biotech 9(10):376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary J, Khatri P, Singla P, Kumawat S, Kumari A et al (2019) Advances in omics approaches for abiotic stress tolerance in tomato. Biology 8(4):90

    Article  CAS  PubMed Central  Google Scholar 

  • Chialva M, Ghignone S, Novero M, Hozzein WN, Lanfranco L et al (2019) Tomato RNA-seq data mining reveals the taxonomic and functional diversity of root-associated microbiota. Microorganisms 8(1):38

    Article  PubMed Central  CAS  Google Scholar 

  • Conner AJ, Jacobs JM (1999) Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutat Res 443(1–2):223–234

    Article  CAS  PubMed  Google Scholar 

  • Da L, Liu Y, Yang J, Tian T, She J et al (2019) AppleMDO: a multi-dimensional omics database for apple co-expression networks and chromatin states. Front Plant Sci 10:1333

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalakouras A, Papadopoulou KK (2020) Epigenetic modifications: An unexplored facet of exogenous RNA application in plants. Plan Theory 9:673

    CAS  Google Scholar 

  • Deborde C, Moing A, Roch L, Jacob D, Rolin D et al (2017) Plant metabolism as studied by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 102–103:61–97

    Article  PubMed  CAS  Google Scholar 

  • do Amaral MN, Souza GM (2017) The challenge to translate OMICS data to whole plant physiology: the context matters. Front Plant Sci 8:2146

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R (2017) Assessing and exploiting functional diversity in germ-plasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes. Front Plant Sci 8:1461

    Article  PubMed  PubMed Central  Google Scholar 

  • Engels JMM, Dempewolf H, Henson-Apollonio V (2011) Ethical considerations in agro-biodiversity research, collecting, and use. J Agric Environ Ethics 24:107–126

    Article  Google Scholar 

  • Félix C, Meneses R, Gonçalves M, TillemanL DAS et al (2019) A multi-omics analysis of the grapevine pathogen Lasiodiplodia theobromae reveals that temperature affects the expression of virulence- and pathogenicity-related genes. Sci Rep 9(1):13144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukushima A, Kusano M, Redestig H, Arita M, Saito K (2009) Integrated omics approaches in plant systems biology. Curr Opin Chem Biol 13(5–6):532–538

    Article  CAS  PubMed  Google Scholar 

  • Fürtauer L, Küstner L, Weckwerth W, Heyer AG, Nägele T (2019) Resolving subcellular plant metabolism. Plant J 100(3):438–455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Giovannoni J (2018) Tomato multiomics reveals consequences of crop domestication and improvement. Cell 172(1–2):6–8

    Article  CAS  PubMed  Google Scholar 

  • Gonulalan EM, Nemutlu E, Bayazeid O, Koçak E, Yalçın FN et al (2020) Metabolomics and proteomics profiles of some medicinal plants and correlation with BDNF activity. Phytomedicine 74:152920

    Article  CAS  PubMed  Google Scholar 

  • Gui S, Yang L, Li J, Luo J, Xu X et al (2020) ZEAMAP, a comprehensive database adapted to the maize multi-Omics era. iScience 23(6):101241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hittalmani S, Mahesh HB, Shirke MD, Biradar H, Uday G et al (2017) Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18(1):465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jahn WT (2011) The 4 basic ethical principles that apply to forensic activities are respect for autonomy, beneficence, nonmaleficence, and justice. J Chiropr Med 10(3):225–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang X, Wang L, Guo Y, Ul Arifeen MZ, Cai X et al (2019) A comparative transcriptomic and proteomic analysis of hexaploid wheat's responses to colonization by Bacillus velezensis and Gaeumannomyces graminis, both separately and combined. Mol Plant Microbe Interact 32(10):1336–1347

    Article  CAS  PubMed  Google Scholar 

  • Kaul S, Sharma TK, Dhar M (2016) “Omics” tools for better understanding the plant-Endophyte interactions. Front Plant Sci 7:955

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Lee MY, Shon JC, Kwon YS, Liu KH et al (2019) Untargeted and targeted metabolomics analyses of blackberries - understanding postharvest red drupelet disorder. Food Chem 300:125169

    Article  CAS  PubMed  Google Scholar 

  • Kiran U, Abdin MZ, Pandey NK (2017) Biosafety, bioethics, and IPR issues in plant biotechnology. In: Abdin M, Kiran U, Kamaluddin AA (eds) Plant biotechnology: principles and applications. Springer, Singapore, pp 367–392

    Chapter  Google Scholar 

  • Kohl P, Crampin EJ, Quinn TA, Noble D (2010) Systems biology: an approach. Clin Pharmacol Ther 88(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Kim GJ, Kim KW, Chu SH, Shin JD et al (2019) Functional haplotype and eQTL analyses of genes affecting cadmium content in cultivated rice. Rice 12(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  • Levsh O, Pluskal T, Carballo V, Mitchell AJ, Weng JK (2019) Independent evolution of rosmarinic acid biosynthesis in two sister families under the Lamiids clade of flowering plants. J Biol Chem 294(42):15193–15205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC et al (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14(8):e8126

    Article  PubMed  PubMed Central  Google Scholar 

  • Macer DR (1997) Major concerns on plant biotechnology applications in plants: safety issues and bioethics. In: K. Watanabe, E. Pehu, R.G. Landes (eds) Plant biotechnology and plant genetic resources for sustainability and productivity. Elsevier, Amsterdam, pp. 87–99

    Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  • McKeown PC, Spillane C (2014) Landscaping plant epigenetics. Methods Mol Biol 1112:1–24

    Article  CAS  PubMed  Google Scholar 

  • Medeiros DB, Daloso DM, Fernie AR, Nikoloski Z, Araújo WL (2015) Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. Plant Cell Environ 38(8):1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Mei ZC, Wei ZJ, Yu JH, Ji FD, Xie LN (2020) Multi-omics association analysis revealed the role and mechanism of epialleles in environmental adaptive evolution of Arabidopsis thaliana. Yi Chuan 42(3):321–331

    PubMed  Google Scholar 

  • Mishra B, Kumar N, Mukhtar MS (2019) Systems biology and machine learning in plant pathogen interactions. Mol Plant-Microbe Interact 32(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Moisseyev G, Park K, Cui A, Freitas D, Rajagopal D et al (2020) RGPDB: database of root-associated genes and promoters in maize, soybean, and sorghum. Database J Biol Databases Curation 2020:baaa038

    Google Scholar 

  • Naithani S, Gupta P, Preece J, D’Eustachio P, Elser JL et al (2020) Plant Reactome: a knowledgebase and resource for comparative pathway analysis. Nucleic Acids Res 48(D1):D1093–D1103

    CAS  PubMed  Google Scholar 

  • Nassar AF, Wu T, Nassar SF, Wisnewski AV (2017) UPLC-MS for metabolomics: a giant step forward in support of pharmaceutical research. Drug Discov Today 22(2):463–470

    Article  CAS  PubMed  Google Scholar 

  • Patavardhan SS, Subba P, Najar A, Awasthi K, D'Souza L et al (2020) Plant-pathogen interactions: broad mite (Polyphagotarsonemus latus)-induced proteomic changes in chili pepper plant (Capsicum frutescens). OMICS 24(12):714–725

    Article  CAS  PubMed  Google Scholar 

  • Pederson ERA, Warshan D, Rasmussen U (2019) Genome sequencing of Pleurozium schreberi: the assembled and annotated draft genome of a Pleurocarpous feather Moss. G3 (Bethesda) 9(9):2791–2797

    Article  CAS  Google Scholar 

  • Peng H, Wang K, Chen Z, Cao Y, Gao Q et al (2020) MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res 48(D1):D1085–D1092

    CAS  PubMed  Google Scholar 

  • Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S et al (2019) Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Meta 9(4):76

    CAS  Google Scholar 

  • Pouteau S (2014) Beyond “second animals”: making sense of plant ethics. J Agric Environ Ethics 27:1–25

    Article  Google Scholar 

  • Rabara RC, Tripathi P, Rushton PJ (2014) The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. OMICS 18(10):601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran X, Zhao F, Wang Y, Liu J, Zhuang Y et al (2020) Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. Plant J 101(1):237–248

    Article  CAS  PubMed  Google Scholar 

  • Riaz MR, Preston GM, Mithani A (2020) MAPPS: a web-based tool for metabolic pathway prediction and network analysis in the postgenomic era. ACS Synth Biol 9(5):1069–1082

    Article  CAS  PubMed  Google Scholar 

  • Reynnells RD (2004) Bioethical considerations in animal production. Poult Sci 83(3):303–306

    Article  CAS  PubMed  Google Scholar 

  • Ryan D, Robards K (2006) Metabolomics: the greatest omics of them all. Anal Chem 78(23):7954–7958

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Sati S, Cavalli G (2017) Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126(1):33–44

    Article  PubMed  Google Scholar 

  • Tardieu F, Varshney RK, Tuberosa R (2017) Improving crop performance under drought - cross-fertilization of disciplines. J Exp Bot 68(7):1393–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teh SL, Rostandy B, Awale M, Luby JJ, Fennell A et al (2019) Genetic analysis of stilbenoid profiles in grapevine stems reveals a major mQTL hotspot on chromosome 18 associated with disease-resistance motifs. Hortic Res 6:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toubiana D, Fernie AR, Nikoloski Z, Fait A (2013) Network analysis: tackling complex data to study plant metabolism. Trends Biotechnol 31(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2(2):79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang WQ, Wang J, Wu YY, Li DW, Allan AC et al (2020a) Genome-wide analysis of coding and non-coding RNA reveals a conserved miR164-NAC regulatory pathway for fruit ripening. New Phytol 225(4):1618–1634

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Fan W, Guo X, Wu K, Zhou S et al (2020b) MaGenDB: a functional genomics hub for Malvaceae plants. Nucleic Acids Res 48(D1):D1076–D1084

    CAS  PubMed  Google Scholar 

  • Wang G, Oh DH, Dassanayake M (2020c) GOMCL: a toolkit to cluster, evaluate, and extract non-redundant associations of gene ontology-based functions. BMC Bioinformatics 21(1):139

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Chang HY (2018) Epigenomics: technologies and applications. Circ Res 122(9):1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD et al (2016) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2:16151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterworth WM, Wilson M, Wang D, Nuhse T, Warward S et al (2019) Phosphoproteomic analysis reveals plant DNA damage signalling pathways with a functional role for histone H2AX phosphorylation in plant growth under genotoxic stress. The Plant J 100(5):1007–1021

    Article  CAS  PubMed  Google Scholar 

  • Windram O, Penfold CA, Denby KJ (2014) Network modeling to understand plant immunity. Annu Rev Phytopathol 52:93–111

    Article  CAS  PubMed  Google Scholar 

  • Wolfender J, Litaudon M, Touboul D, Queiroz EF (2019) Innovative omics-based approaches for prioritisation and targeted isolation of natural products - new strategies for drug discovery. Nat Prod Rep 36(6):855–868

    Article  CAS  PubMed  Google Scholar 

  • Xia EH, Li FD, Tong W, Li PH, Wu Q et al (2019) Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnol J 17(10):1938–1953

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie M, An F, Wu J, Liu Y, Shi H et al (2019) Meta-omics reveal microbial assortments and key enzymes in bean sauce mash, a traditional fermented soybean product. J Sci Food Agric 99(14):6522–6534

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Cao J, Wang X, Chen Q, Jin W et al (2019) Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, Teosinte. Plant Cell 31(9):1990–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Zhong Z, Wang T, Ou Y, Tian J et al (2019) Integrative omics of Lonicera japonica Thunb. Flower development unravels molecular changes regulating secondary metabolites. J Proteome 208:103470

    Article  CAS  Google Scholar 

  • Yuan GC, Cai L, Elowitz M, Enver T, Fan G et al (2017) Challenges and emerging directions in single-cell analysis. Genome Biol 18(1):84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng S, Lyu Z, Narisetti SRK, Xu D, Joshi T (2019) Knowledge Base commons (KBCommons) v1.1: a universal framework for multi-omics data integration and biological discoveries. BMC Genomics 20(Suppl 11):947

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zhang L, Tai Y, Wang X, Ho CT et al (2018) Gene discovery of characteristic metabolic pathways in the tea plant (Camellia sinensis) using 'Omics'-based network approaches: a future perspective. Front Plant Sci 9:480

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Pan BZ, Chen M, Chen W, Li J et al (2019a) JCDB: a comprehensive knowledge base for Jatropha curcas, an emerging model for woody energy plants. BMC Genomics 20(Suppl 9):958

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YW, Wen YJ, Dunwell JM, Zhang YM (2019b) QTL.gCIMapping.GUI v2.0: an R software for detecting small-effect and linked QTLs for quantitative traits in bi-parental segregation populations. Comput Struct Biotechnol J 18:59–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Zheng L, Zheng Y, Zhou C, Huang P et al (2019c) Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum. Front Plant Sci 10:1274

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Ma JQ, Chen JD, Ma CL, Chen W et al (2019) Gene coexpression networks reveal key drivers of flavonoid variation in eleven tea cultivars (Camellia sinensis). J Agric Food Chem 67(35):9967–9978

    Article  PubMed  Google Scholar 

  • Zhong Z, Kobayashi T, Zhu W, Imai H, Zhao R et al (2020) Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean. J Proteome 221:103781

    Article  CAS  Google Scholar 

  • Zhu G, Wang S, Huang Z, Zhang S, Liao Q et al (2018) Rewiring of the fruit metabolome in tomato breeding. Cell 172(1–2):249–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AKR gratefully acknowledges the National Academy of Sciences, India, for awarding NASI-Senior Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P.K., Rai, A.K., Sharma, N.K. (2021). Safety and Ethics in Omics Biology. In: Kumar, A., Kumar, R., Shukla, P., Pandey, M.K. (eds) Omics Technologies for Sustainable Agriculture and Global Food Security Volume 1. Springer, Singapore. https://doi.org/10.1007/978-981-16-0831-5_12

Download citation

Publish with us

Policies and ethics