Skip to main content

Dimensional Analysis for Predicting the Fracture Behavior of Particulate Polymer Composite Under the Effect of Impact Loading

  • Chapter
  • First Online:
Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In the current study, a methodology of dimensional analysis based on Buckingham-pi theorem is presented to determine the dynamic fracture behavior of glass filled epoxy composites. Rod shaped glass fillers having an aspect ratio of 80 have been used to reinforce the epoxy matrix. These glass fillers were used in the volume fraction of 0%, 5%, 10% and 15%. Dynamic fracture toughness index for crack-opening mode (mode-I) is proposed to find out the fracture toughness of the Particulate Polymer Composites (PPCs) under different strain rate conditions of impact loading. The legitimacy of the proposed methodology is supported with the limited experimental results of dynamic fracture test which was conducted for varying filler concentration. The influence of various governing factors on the fracture toughness of the particulate polymer composites is also discussed and shear wave speed is found to have the most pronounced effect on the dynamic fracture toughness of the resulting composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barenblatt, G.I.: Dimensional Analysis. CRC Press (1987)

    Google Scholar 

  2. Bharath, K.N., Madhu, P., Gowda, T.G.Y., Sanjay, M.R., Kushvaha, V., Siengchin, S.: Alkaline effect on characterization of discarded waste of Moringa oleifera fiber as a potential eco-friendly reinforcement for biocomposites. J. Polym. Environ. (2020). https://doi.org/10.1007/s10924-020-01818-4

    Article  Google Scholar 

  3. Bouché, G.A., Akono, A.-T.: Micromechanics-based estimates on the macroscopic fracture toughness of micro-particulate composites. Eng. Fract. Mech. 148, 243–257 (2015). https://doi.org/10.1016/j.engfracmech.2015.09.037

    Article  Google Scholar 

  4. Buckingham, E.: On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4(4), 345–376 (1914). https://doi.org/10.1103/PhysRev.4.345

    Article  Google Scholar 

  5. Davies, P.:. Composites for marine applications. In Soares, C.A.M., Soares, C.M.M., Freitas, M.J.M. (eds.) Mechanics of Composite Materials and Structures, pp. 235–248. Springer, Netherlands (1999). https://doi.org/10.1007/978-94-011-4489-6_12

  6. Desavale, R.G., Venkatachalam, R., Chavan, S.P.: Experimental and numerical studies on spherical roller bearings using multivariable regression analysis. J. Vib. Acoust. 136(2), 021022–021022-10 (2014). https://doi.org/10.1115/1.4026433

  7. Garg, A., Huang, H., Kushvaha, V., Madhushri, P., Kamchoom, V., Wani, I., Koshy, N., Zhu, H.-H.: Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys. 68(1), 207–217 (2020). https://doi.org/10.1007/s11600-019-00387-y

    Article  Google Scholar 

  8. Garg, A., Reddy, N.G., Huang, H., Buragohain, P., Kushvaha, V.: Modelling contaminant transport in fly ash–bentonite composite landfill liner: mechanism of different types of ions. Sci. Rep. 10(1), 11330 (2020). https://doi.org/10.1038/s41598-020-68198-6

    Article  CAS  Google Scholar 

  9. Gowda, V.A.Y., Gupta, M.K., Jamil, M., Kushvaha, V., Siengchin, S.: Novel Muntingia Calabura bark fiber reinforced green-epoxy composite: a sustainable and green material for cleaner production. J. Clean. Prod. 126337 (2021). https://doi.org/10.1016/j.jclepro.2021.126337

  10. Gowda, Y.T.G., Madhu, V.A.P., Kushvaha, V., Siengchin, S.M.R.S.: A new study on flax‐basalt‐carbon fiber reinforced epoxy/bioepoxy hybrid composites. Wiley (2021). https://doi.org/10.1002/pc.25944

  11. Hadjileontiadis, L.J., Douka, E., Trochidis, A.: Fractal dimension analysis for crack identification in beam structures. Mech. Syst. Signal Process. 19(3), 659–674 (2005). https://doi.org/10.1016/j.ymssp.2004.03.005

    Article  Google Scholar 

  12. Hemath, M., Mavinkere Rangappa, S., Kushvaha, V., Dhakal, H.N., Siengchin, S.: A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym. Compos. (2020). https://doi.org/10.1002/pc.25703

    Article  Google Scholar 

  13. Javid, S., Kushvaha, V., Karami, G., McEligot, S., Dragomir-Daescu, D.: Cadaveric femoral fractures in a fall on the hip configuration. In: Barthelat, F., Zavattieri, P., Korach, C.S., Prorok, B.C., Grande-Allen, K.J. (eds.) Mechanics of Biological Systems and Materials, vol. 4, pp. 53–57. Springer International Publishing (2014)

    Google Scholar 

  14. Kohrmann, M., Buchschmid, M., Greim, A., Müller, G., Schanda, U.: Vibroacoustic characteristics of light-weighted slabs—Part 1: Aspects of Numerical Modeling, Model Updating and Parametric Studies using the Buckingham Pi-Theorem (2013)

    Google Scholar 

  15. Koppula, S., Kaviti, A.K., Namala, K.K.: Experimental investigation of fibre reinforced composite materials under impact load. IOP Conf. Ser. Mater. Sci. Eng. 330, 012047 (2018). https://doi.org/10.1088/1757-899X/330/1/012047

  16. Korneeva, N.V., Kudinov, V.V., Krylov, I.K., Mamonov, V.I.: Properties and destruction of anisotropic composite materials under static deformation and impact loading conditions. J. Phys: Conf. Ser. 1134, 012028 (2018). https://doi.org/10.1088/1742-6596/1134/1/012028

    Article  CAS  Google Scholar 

  17. Kumar, S., Kachhap, R.K., Satapathy, B.K., Patnaik, A.: Wear performance forecasting of chopped fiber-reinforced polymer composites: a new approach using dimensional analysis. Tribol. Trans. 60(5), 873–880 (2017). https://doi.org/10.1080/10402004.2016.1224962

    Article  CAS  Google Scholar 

  18. Kushvaha, V., Anandkumar, S., Madhushri, P.: Dynamic fracture toughness index: a new integrated methodology for mode-I fracture behaviour of polymer composite under impact loading. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab4e35

    Article  Google Scholar 

  19. Kushvaha, V., Tippur, H.: Effect of filler shape, volume fraction and loading rate on dynamic fracture behavior of glass-filled epoxy. Compos. B Eng. 64, 126–137 (2014). https://doi.org/10.1016/j.compositesb.2014.04.016

    Article  CAS  Google Scholar 

  20. Kushvaha, V.: Synthesis, Processing and Dynamic Fracture Behavior of Particulate Epoxy Composites with Conventional and Hierarchical Micro-/Nano-fillers (2016). https://etd.auburn.edu/handle/10415/5468

  21. Kushvaha, V., Branch, A., Tippur, H.: Effect of loading rate on dynamic fracture behavior of glass and carbon fiber modified epoxy. In: Song, B., Casem, D., Kimberley, J. (eds.) Dynamic Behavior of Materials, vol. 1, pp. 169–176. Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-00771-7_21

  22. Kushvaha, V., Kumar, S.A., Madhushri, P., Sharma, A.: Artificial neural network technique to predict dynamic fracture of particulate composite. J. Compos. Mater., 0021998320911418 (2020). https://doi.org/10.1177/0021998320911418

  23. Kushvaha, V., Tippur, H.: Effect of filler particle shape on dynamic fracture behavior of glass-filled epoxy. In: Chalivendra, V., Song, B., Casem, D. (eds.) Dynamic Behavior of Materials, vol. 1, pp. 513–522. Springer New York (2013). https://doi.org/10.1007/978-1-4614-4238-7_66

  24. McGarry, F.J.: Polymer composites. Annu. Rev. Mater. Sci. 24(1), 63–82 (1994). https://doi.org/10.1146/annurev.ms.24.080194.000431

    Article  CAS  Google Scholar 

  25. Miles, J.W.: Dimensional Analysis for Engineers (Taylor, E.S., ed.). Oxford University Press (1974). 162 pp. £5.75. J. Fluid Mech. 68(2), 416–416. https://doi.org/10.1017/S0022112075210900

  26. Moloney, A.C., Kausch, H.H., Kaiser, T., Beer, H.R.: Parameters determining the strength and toughness of particulate filled epoxide resins. J. Mater. Sci. 22(2), 381–393 (1987). https://doi.org/10.1007/BF01160743

    Article  CAS  Google Scholar 

  27. Paul, S.N., Karambelkar, V.V., Rao, S.N., Ekhe, J.D.: The application of Buckingham π theorem to modeling polypyrrole synthesis done by chemical oxidative polymerization. Indian J. Sci. Technol. 8(35) (2015)

    Google Scholar 

  28. Pescetti, D.: Dimensional analysis and qualitative methods in problem solving. Eur. J. Phys. 29(4), 697–707 (2008). https://doi.org/10.1088/0143-0807/29/4/005

    Article  Google Scholar 

  29. Qiao, Y.: Fracture toughness of composite materials reinforced by debondable particulates. Scripta Mater. 49(6), 491–496 (2003). https://doi.org/10.1016/S1359-6462(03)00367-1

    Article  CAS  Google Scholar 

  30. Reddy, G.M., Reddy, V.D.: Theoretical investigations on dimensional analysis of ball bearing parameters by using Buckingham Pi-theorem. Procedia Eng. 97, 1305–1311 (2014). https://doi.org/10.1016/j.proeng.2014.12.410

    Article  Google Scholar 

  31. Rossman, T., Kushvaha, V., Dragomir-Daescu, D.: QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Comput. Methods Biomech. Biomed. Eng. 19(2), 208–216 (2016). https://doi.org/10.1080/10255842.2015.1006209

    Article  Google Scholar 

  32. Saini, R., Kenny, M., Barz, D.P.J.: Electroosmotic flow through packed beds of granular materials. Microfluid. Nanofluid. 19(3), 693–708 (2015). https://doi.org/10.1007/s10404-015-1594-0

    Article  CAS  Google Scholar 

  33. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. CRC Press (2018). https://doi.org/10.1201/9780203739730

  34. Sharma, A., Kushvaha, V.: Predictive modelling of fracture behaviour in silica-filled polymer composite subjected to impact with varying loading rates using artificial neural network. Eng. Fract. Mech. 239, 107328 (2020). https://doi.org/10.1016/j.engfracmech.2020.107328

    Article  Google Scholar 

  35. Sharma, A., Subramaiyan, A.K., Kushvaha, V.: Effect of aspect ratio on dynamic fracture toughness of particulate polymer composite using artificial neural network. Eng. Fract. Mech. 228, 106907 (2020). https://doi.org/10.1016/j.engfracmech.2020.106907

    Article  Google Scholar 

  36. Sharma, A., Khan, V.C., Balaganesan, G., Kushvaha, V.: Performance of nano filler reinforced composite overwrap system to repair damaged pipelines subjected to quasi-static and impact loading (2020). https://doi.org/10.1007/s11668-020-01013-6

  37. Sharma, A., Madhushri, P., Kushvaha, V., Subramaniyan, A.K.: Prediction of the fracture toughness of silicafilled epoxy composites using K-nearest neighbor (KNN) method. In: 2020 International Conference on Computational Performance Evaluation (ComPE), pp. 194–198 (2020). https://doi.org/10.1109/ComPE49325.2020.9200093

  38. Sharma, A., Munde, Y., Kushvaha, V.: Representative volume element based micromechanical modelling of rod shaped glass filled epoxy composites. SN Appl. Sci. 3, 232 (2021). https://doi.org/10.1007/s42452-021-04261-9

  39. Shehadeh, M., Shennawy, Y., El-Gamal, H.: Similitude and scaling of large structural elements: case study. Alexandria Eng. J. 54(2) (2015). https://cyberleninka.org/article/n/571725

  40. Singh, R., Khamba, J.S.: Mathematical modeling of tool wear rate in ultrasonic machining of titanium. Int. J. Adv. Manuf. Technol. 43(5), 573–580 (2009). https://doi.org/10.1007/s00170-008-1729-5

    Article  Google Scholar 

  41. Song, S.G., Shi, N., Iii, G.T.G., Roberts, J.A.: Reinforcement shape effects on the fracture behavior and ductility of particulate-reinforced 6061-Al matrix composites. Metall. Mater. Trans. A 27(11), 3739–3746 (1996). https://doi.org/10.1007/BF02595465

    Article  Google Scholar 

  42. Sonin, A.A.: The Physical Basis of Dimensional Analysis, 2nd edn. Department of Mechanical Engineering (2001)

    Google Scholar 

  43. Tan, Q.-M.: Dimensional Analysis: With Case Studies in Mechanics. Springer-Verlag (2011). https://www.springer.com/gp/book/9783642192333

  44. Wani, I., Kumar, H., Rangappa, S.M., Peng, L., Siengchin, S., Kushvaha, V.: Multiple regression model for predicting cracks in soil amended with pig manure biochar and wood biochar. J. Hazard. Toxic Radioactive Waste 25(1), 04020061 (2021). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000561

    Article  CAS  Google Scholar 

  45. Wani, I., Sharma, A., Kushvaha, V., Madhushri, P., Peng, L.: Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. J. Hazard. Toxic Radioactive Waste 24(4), 04020048 (2020). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000545

    Article  CAS  Google Scholar 

  46. Wool, R.P., Sun, X.S.: Bio-Based Polymers and Composites. Elsevier (2005)

    Google Scholar 

  47. Zuhudi, N.Z.M., Jayaraman, K., Lin, R.J.T., Nur, N.M.: Impact resistance of bamboo fabric reinforced polypropylene composites and their hybrids. IOP Conf. Ser. Mater. Sci. Eng. 370, 012047 (2018). https://doi.org/10.1088/1757-899X/370/1/012047

    Article  Google Scholar 

  48. Zweben, C.: Advanced composites for aerospace applications: a review of current status and future prospects. Composites 12(4), 235–240 (1981). https://doi.org/10.1016/0010-4361(81)90011-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kushvaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kushvaha, V., Sharma, A. (2021). Dimensional Analysis for Predicting the Fracture Behavior of Particulate Polymer Composite Under the Effect of Impact Loading. In: Mavinkere Rangappa, S., Satishkumar, T.P., Cuadrado, M.M.M., Siengchin, S., Barile, C. (eds) Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites . Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0642-7_7

Download citation

Publish with us

Policies and ethics