Skip to main content

Distribution and Impact of Microplastics in the Aquatic Systems: A Review of Ecotoxicological Effects on Biota

  • Chapter
  • First Online:
Microplastic Pollution

Abstract

Microplastics (MPs) are emerging pollutants attracting attention due to there have been widely distributed in the aquatic and terrestrial environment. MPs have been quantified and identified in marine, freshwater, and terrestrial environments from biota samples. May originate from macroplastic waste due to improper management of them and also from the primary sources, so that emerges as a problem for the aquatic biota. This review aimed to discuss (a) the occurrence of MP, (b) the interaction and uptake mechanism, (c) effects on the biota, (d) microplastics and associated pollutant effect on the aquatic biota. The retrieved literature confirmed us MP and its associated contaminants have adverse effects on aquatic biota, thereafter affect human health through the food chain. Finally, future research directives and recommendations on the MP pollution research, emphasized on the experimental ecotoxicological studies and risk assessments of MP to aquatic organisms were highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AChE:

Anti-cholinesterase

Ag:

Silver

BAF:

Bioaccumulation Factor

BPA:

Bisphenol A

CAT:

Catalase

Cu:

Copper

DDT:

Dichlorodiphenyltrichloroethane

EDC:

Endocrine-Disrupting Chemicals

EROD:

Ethoxyresorufin-O-Deethylase

FPs:

Fine Plastic Particles

FTIR:

Fourier Transform Infrared

FTIR-ATR:

Fourier Transform Infrared- Attenuated Total Reflectance

HDL:

High-density lipoprotein

HDPE:

High-Density Polyethylene

Hg:

Mercury

HOC:

Hydrophobic organic contaminants

IDH:

Isocitrate Dehydrogenase

LDH:

Enzymes Lactate Dehydrogenase

LDPE:

Low-Density Polyethylene,

LPO:

Lipid Oxidation

MDA:

Malondialdehyde

MPs:

Microplastics

NOM:

Natural organic matter

Ni:

Nickel

NPs:

Nanoparticles

PA:

Polyamide

PAHs:

Polycyclic Aromatic Hydrocarbons

PAN:

Polyacrylonitrile

PAN:

Polyacrylonitrile

PBDEs:

Polybrominated Diphenyl ethers

PCBs:

Polychlorinated Biphenyls

References

  1. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782

    Article  Google Scholar 

  2. Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Thompson CR (2013) Policy: classify plastic waste as hazardous. Nature 494:169–170. https://doi.org/10.1038/494169a

  3. Pereao O, Opeolu B, Fatoki O (2020) Microplastics in aquatic environment: characterization, ecotoxicological effect, implications for ecosystems and developments in South Africa. Environ Sci Pollut Res 27:22271–22291. https://doi.org/10.1007/s11356-020-08688-2

    Article  CAS  Google Scholar 

  4. Prokić MD, Radovanović TB, Gavrić JP, Faggio C (2019) Ecotoxicological effects of microplastics: examination of biomarkers, current state and future perspectives. TrAC Trends Anal Chem 111:37–46. https://doi.org/10.1016/j.trac.2018.12.001

    Article  CAS  Google Scholar 

  5. Gregory MR (2009) Environmental implications of plastic debris in marine settings- entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc B Biol Sci 364:2013–2025. https://doi.org/10.1098/rstb.2008.0265

  6. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: A review. Mar Pollut Bull 62:2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

    Article  CAS  Google Scholar 

  7. Lusher A (2015) Marine anthropogenic litter: distribution, interactions and effects. In: Marine anthropogenic litter. Springer, Cham., pp 1–447. ISBN 9783319165103

    Google Scholar 

  8. Aragaw TA (2020) Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar Pollut Bull 159:111517. https://doi.org/10.1016/j.marpolbul.2020.111517

    Article  CAS  Google Scholar 

  9. Sebille E, Van Gilbert A, Spathi C (2016) The ocean plastic pollution challenge: towards solutions in the UK. Grantham Inst Breifing Pap 19:1–16

    Google Scholar 

  10. Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566–567:333–349. https://doi.org/10.1016/j.scitotenv.2016.05.084

    Article  CAS  Google Scholar 

  11. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(80):768–771

    Google Scholar 

  12. Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol 1:1–8. https://doi.org/10.1038/s41559-017-0116

    Article  Google Scholar 

  13. Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852. https://doi.org/10.1016/S0025-326X(02)00220-5

    Article  CAS  Google Scholar 

  14. Barletta M, Lima ARA, Costa MF (2019) Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Sci Total Environ 651:1199–1218. https://doi.org/10.1016/j.scitotenv.2018.09.276

    Article  CAS  Google Scholar 

  15. Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLOS One 9:1–15. https://doi.org/10.1371/journal.pone.0111913

    Article  CAS  Google Scholar 

  16. Thompson RC, Olson Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(80):838. https://doi.org/10.1126/science.1094559

  17. Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, Hajbane S, Cunsolo S, Schwarz A, Levivier A et al (2018) Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-22939-w

    Article  CAS  Google Scholar 

  18. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190

    Article  CAS  Google Scholar 

  19. Nelms SE, Galloway TS, Godley BJ, Jarvis DS, Lindeque PK (2018) Investigating microplastic trophic transfer in marine top predators. Environ Pollut 238:999–1007. https://doi.org/10.1016/j.envpol.2018.02.016

    Article  CAS  Google Scholar 

  20. Welden NAC, Cowie PR (2016) Environment and gut morphology in fl uence microplastic retention in langoustine. Nephrops Norvegicus Environ Pollut 214:859–865. https://doi.org/10.1016/j.envpol.2016.03.067

    Article  CAS  Google Scholar 

  21. Sathish MN, Jeyasanta I, Patterson J (2020) Occurrence of microplastics in epipelagic and mesopelagic fishes from Tuticorin, Southeast coast of India. Sci Total Environ 720:137614. https://doi.org/10.1016/j.scitotenv.2020.137614

    Article  CAS  Google Scholar 

  22. Kumar VE, Ravikumar G, Jeyasanta KI (2018) Occurrence of microplastics in fishes from two landing sites in Tuticorin, South east coast of India. Mar Pollut Bull 135:889–894. https://doi.org/10.1016/j.marpolbul.2018.08.023

    Article  CAS  Google Scholar 

  23. Su L, Deng H, Li B, Chen Q, Pettigrove V, Wu C, Shi H (2019) The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. J Hazard Mater 365:716–724. https://doi.org/10.1016/j.jhazmat.2018.11.024

    Article  CAS  Google Scholar 

  24. Ribeiro F, Garcia AR, Pereira BP, Fonseca M, Mestre NC, Fonseca TG, Ilharco LM, Bebianno MJ (2017) Microplastics effects in Scrobicularia plana. Mar Pollut Bull 122:379–391. https://doi.org/10.1016/j.marpolbul.2017.06.078

    Article  CAS  Google Scholar 

  25. Steer M, Cole M, Thompson RC, Lindeque PK (2017) Microplastic ingestion in fish larvae in the western English Channel. Environ Pollut 226:250–259. https://doi.org/10.1016/j.envpol.2017.03.062

    Article  CAS  Google Scholar 

  26. Desforges JPW, Galbraith M, Ross PS (2015) Ingestion of microplastics by zooplankton in the northeast pacific ocean. Arch Environ Contam Toxicol 69:320–330. https://doi.org/10.1007/s00244-015-0172-5

    Article  CAS  Google Scholar 

  27. Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR (2015) Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut 199:10–17. https://doi.org/10.1016/j.envpol.2015.01.008

    Article  CAS  Google Scholar 

  28. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70. https://doi.org/10.1016/j.envpol.2014.06.010

    Article  CAS  Google Scholar 

  29. Alomar C, Deudero S (2017) Evidence of microplastic ingestion in the shark Galeus melastomus Rafinesque, 1810 in the continental shelf off the western Mediterranean Sea. Environ Pollut 223:223–229. https://doi.org/10.1016/j.envpol.2017.01.015

    Article  CAS  Google Scholar 

  30. Hoarau L, Ainley L, Jean C, Ciccione S (2014) Ingestion and defecation of marine debris by loggerhead sea turtles, Caretta caretta, from by-catches in the South-West Indian Ocean. Mar Pollut Bull 84:90–96. https://doi.org/10.1016/j.marpolbul.2014.05.031

    Article  CAS  Google Scholar 

  31. Besseling E, Foekema EM, Van Franeker JA, Leopold MF, Kühn S, Bravo Rebolledo EL, Heße E, Mielke L, IJzer J, Kamminga P, et al (2015) Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar Pollut Bull 95:248–252. https://doi.org/10.1016/j.marpolbul.2015.04.007

  32. Bravo Rebolledo EL, Van Franeker JA, Jansen OE, Brasseur SMJM (2013) Plastic ingestion by harbour seals (Phoca vitulina) in The Netherlands. Mar Pollut Bull 67:200–202. https://doi.org/10.1016/j.marpolbul.2012.11.035

  33. Windsor FM, Tilley RM, Tyler CR, Ormerod SJ (2019) Microplastic ingestion by riverine macroinvertebrates. Sci Total Environ 646:68–74. https://doi.org/10.1016/j.scitotenv.2018.07.271

    Article  CAS  Google Scholar 

  34. Su L, Nan B, Hassell KL, Craig NJ, Pettigrove V (2019) Microplastics biomonitoring in Australian urban wetlands using a common noxious fish (Gambusia holbrooki). Chemosphere 228:65–74. https://doi.org/10.1016/j.chemosphere.2019.04.114

    Article  CAS  Google Scholar 

  35. Yuan W, Liu X, Wang W, Di M, Wang J (2019) Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake. China Ecotoxicol Environ Saf 170:180–187. https://doi.org/10.1016/j.ecoenv.2018.11.126

    Article  CAS  Google Scholar 

  36. Xiong X, Zhang K, Chen X, Shi H, Luo Z, Wu C (2018) Sources and distribution of microplastics in China’s largest inland lake−Qinghai Lake. Environ Pollut 235:899–906. https://doi.org/10.1016/j.envpol.2017.12.081

    Article  CAS  Google Scholar 

  37. Bessa F, Barría P, Neto JM, Frias JPGL, Otero V, Sobral P, Marques JC (2018) Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar Pollut Bull 128:575–584. https://doi.org/10.1016/j.marpolbul.2018.01.044

    Article  CAS  Google Scholar 

  38. McNeish RE, Kim LH, Barrett HA, Mason SA, Kelly JJ, Hoellein TJ (2018) Microplastic in riverine fish is connected to species traits. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-29980-9

    Article  CAS  Google Scholar 

  39. Collard F, Gasperi J, Gilbert B, Eppe G, Azimi S, Rocher V, Tassin B (2018) Anthropogenic particles in the stomach contents and liver of the freshwater fish Squalius cephalus. Sci Total Environ 643:1257–1264. https://doi.org/10.1016/j.scitotenv.2018.06.313

    Article  CAS  Google Scholar 

  40. Silva-Cavalcanti JS, Silva JDB, França EJ, de Araújo MCB, de Gusmão F (2017) Microplastics ingestion by a common tropical freshwater fishing resource. Environ Pollut 221:218–226. https://doi.org/10.1016/j.envpol.2016.11.068

  41. Pazos RS, Maiztegui T, Colautti DC, Paracampo AH, Gómez N (2017) Microplastics in gut contents of coastal freshwater fish from Río de la Plata estuary. Mar Pollut Bull 122:85–90. https://doi.org/10.1016/j.marpolbul.2017.06.007

    Article  CAS  Google Scholar 

  42. Hurley RR, Woodward JC, Rothwell JJ (2017) Ingestion of Microplastics by Freshwater Tubifex Worms. Environ Sci Technol 51:12844–12851. https://doi.org/10.1021/acs.est.7b03567

    Article  CAS  Google Scholar 

  43. Su L, Cai H, Kolandhasamy P, Wu C, Rochman CM, Shi H (2018) Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ Pollut 234:347–355. https://doi.org/10.1016/j.envpol.2017.11.075

    Article  CAS  Google Scholar 

  44. Zhang K, Xiong X, Hu H, Wu C, Bi Y, Wu Y, Zhou B, Lam PK, Liu J (2017) Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir. China Environ Sci Technol 51:3794–3801. https://doi.org/10.1021/acs.est.7b00369

    Article  CAS  Google Scholar 

  45. Faure F, Demars C, Wieser O, Kunz M, de Alencastro LF (2015) Plastic pollution in Swiss surface waters: nature and concentrations, interaction with pollutants. (Special Issue: Microplastics in the environment). Environ Chem 12:582–591

    Google Scholar 

  46. Andrady AL (2015) Persistence of plastic litter in the oceans. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp 57–72. ISBN 9783319165097

    Google Scholar 

  47. Gewert B, Plassmann MM, Macleod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17:1513–1521. https://doi.org/10.1039/c5em00207a

    Article  CAS  Google Scholar 

  48. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 43:5026–5031. https://doi.org/10.1021/es800249a

  49. Moore CJ, Moore SL, Leecaster MK, Weisberg SB (2001) A comparison of plastic and plankton in the North Pacific Central Gyre. Mar Pollut Bull 42:1297–1300. https://doi.org/10.1016/S0025-326X(01)00114-X

    Article  CAS  Google Scholar 

  50. Moore CJ (2008) Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ Res 108:131–139. https://doi.org/10.1016/j.envres.2008.07.025

    Article  CAS  Google Scholar 

  51. Kühn S, van Franeker JA (2012) Plastic ingestion by the northern fulmar (Fulmarus glacialis) in Iceland. Mar Pollut Bull 64:1252–1254. https://doi.org/10.1016/j.marpolbul.2012.02.027

    Article  CAS  Google Scholar 

  52. Eriksson C, Burton H (2003) Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. AMBIO A J Hum Environ 32:380–384

    Google Scholar 

  53. Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 177:1–3. https://doi.org/10.1016/j.envpol.2013.01.046

  54. Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62:1207–1217. https://doi.org/10.1016/j.marpolbul.2011.03.032

    Article  CAS  Google Scholar 

  55. Setälä O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83. https://doi.org/10.1016/j.envpol.2013.10.013

    Article  CAS  Google Scholar 

  56. Bergmann M, Gutow L, Klages M (2015) Marine anthropogenic litter. ISBN 9783319165103

    Google Scholar 

  57. Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B (2020) Microplastics in aquatic environments: toxicity to trigger ecological consequences. Environ Pollut 261:114089. https://doi.org/10.1016/j.envpol.2020.114089

    Article  CAS  Google Scholar 

  58. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. https://doi.org/10.1016/j.envpol.2013.02.031

    Article  CAS  Google Scholar 

  59. Li J, Liu H, Chen JP (2018) Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res 137:362–374. https://doi.org/10.1016/j.watres.2017.12.056

    Article  CAS  Google Scholar 

  60. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054–4060. https://doi.org/10.1021/acs.est.6b00183

    Article  CAS  Google Scholar 

  61. Qiao R, Sheng C, Lu Y, Zhang Y, Ren H, Lemos B (2019) Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci Total Environ 662:246–253. https://doi.org/10.1016/j.scitotenv.2019.01.245

    Article  CAS  Google Scholar 

  62. Jin Y, Xia J, Pan Z, Yang J, Wang W, Fu Z (2018) Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ Pollut 235:322–329. https://doi.org/10.1016/j.envpol.2017.12.088

    Article  CAS  Google Scholar 

  63. Watts AJR, Urbina MA, Goodhead R, Moger J, Lewis C, Galloway TS (2016) Effect of Microplastic on the Gills of the Shore Crab Carcinus maenas. Environ Sci Technol 50:5364–5369. https://doi.org/10.1021/acs.est.6b01187

    Article  CAS  Google Scholar 

  64. Jeong CB, Won EJ, Kang HM, Lee MC, Hwang DS, Hwang UK, Zhou B, Souissi S, Lee SJ, Lee JS (2016) Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus). Environ Sci Technol 50:8849–8857. https://doi.org/10.1021/acs.est.6b01441

    Article  CAS  Google Scholar 

  65. Jaikumar G, Brun NR, Vijver MG, Bosker T (2019) Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. Environ Pollut 249:638–646. https://doi.org/10.1016/j.envpol.2019.03.085

    Article  CAS  Google Scholar 

  66. Gambardella C, Morgana S, Ferrando S, Bramini M, Piazza V, Costa E, Garaventa F, Faimali M (2017) Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol Environ Saf 145:250–257. https://doi.org/10.1016/j.ecoenv.2017.07.036

    Article  CAS  Google Scholar 

  67. Gambardella C, Morgana S, Bramini M, Rotini A, Manfra L, Migliore L, Piazza V, Garaventa F, Faimali M (2018) Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels. Mar Environ Res 141:313–321. https://doi.org/10.1016/j.marenvres.2018.09.023

    Article  CAS  Google Scholar 

  68. Romano N, Ashikin M, Teh JC, Syukri F, Karami A (2018) Effects of pristine polyvinyl chloride fragments on whole body histology and protease activity in silver barb Barbodes gonionotus fry. Environ Pollut 237:1106–1111. https://doi.org/10.1016/j.envpol.2017.11.040

    Article  CAS  Google Scholar 

  69. Karami A, Romano N, Galloway T, Hamzah H (2016) Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus). Environ Res 151:58–70. https://doi.org/10.1016/j.envres.2016.07.024

    Article  CAS  Google Scholar 

  70. Yin L, Chen B, Xia B, Shi X, Qu K (2018) Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J Hazard Mater 360:97–105. https://doi.org/10.1016/j.jhazmat.2018.07.110

    Article  CAS  Google Scholar 

  71. Lei L, Wu S, Lu S, Liu M, Song Y, Fu Z, Shi H, Raley-Susman KM, He D (2018) Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 619–620:1–8. https://doi.org/10.1016/j.scitotenv.2017.11.103

    Article  CAS  Google Scholar 

  72. Wong BBM, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26:665–673. https://doi.org/10.1093/beheco/aru183

    Article  Google Scholar 

  73. Rist SE, Assidqi K, Zamani NP, Appel D, Perschke M, Huhn M, Lenz M (2016) Suspended micro-sized PVC particles impair the performance and decrease survival in the Asian green mussel Perna viridis. Mar Pollut Bull 111:213–220. https://doi.org/10.1016/j.marpolbul.2016.07.006

    Article  CAS  Google Scholar 

  74. Ziajahromi S, Kumar A, Neale PA, Leusch FDL (2017) Impact of microplastic beads and fibers on waterflea (ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ Sci Technol 51:13397–13406. https://doi.org/10.1021/acs.est.7b03574

    Article  CAS  Google Scholar 

  75. Au SY, Bruce TF, Bridges WC, Klaine SJ (2015) Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ Toxicol Chem 34:2564–2572. https://doi.org/10.1002/etc.3093

    Article  CAS  Google Scholar 

  76. Murphy F, Quinn B (2018) The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ Pollut 234:487–494. https://doi.org/10.1016/j.envpol.2017.11.029

    Article  CAS  Google Scholar 

  77. Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556–16561. https://doi.org/10.1021/jp1054759

    Article  CAS  Google Scholar 

  78. Besseling E, Wang B, Lürling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343. https://doi.org/10.1021/es503001d

  79. Qiao R, Lu K, Deng Y, Ren H, Zhang Y (2019) Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish. Sci Total Environ 682:128–137. https://doi.org/10.1016/j.scitotenv.2019.05.163

    Article  CAS  Google Scholar 

  80. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  CAS  Google Scholar 

  81. Teuten EL, Rowland SJ, Galloway TS, Galloway TS (2007) Potential for plastics to transport hydrophobic contaminants potential for plastics to transport hydrophobic contaminants. ACS Publ 41:7759–7764

    CAS  Google Scholar 

  82. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, et al (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci 364:2027–2045. https://doi.org/10.1098/rstb.2008.0284

  83. Ma P, Wei Wang M, Liu H, Feng Chen Y, Xia J (2019) Research on ecotoxicology of microplastics on freshwater aquatic organisms. Environ Pollut Bioavailab 31:131–137. https://doi.org/10.1080/26395940.2019.1580151

  84. Antunes JC, Frias JGL, Micaelo AC, Sobral P (2013) Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants. Estuar Coast Shelf Sci 130:62–69. https://doi.org/10.1016/j.ecss.2013.06.016

    Article  CAS  Google Scholar 

  85. Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, Ivleva NP (2016) Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Res 98:64–74. https://doi.org/10.1016/j.watres.2016.03.015

    Article  CAS  Google Scholar 

  86. Napper IE, Bakir A, Rowland SJ, Thompson RC (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99:178–185. https://doi.org/10.1016/j.marpolbul.2015.07.029

    Article  CAS  Google Scholar 

  87. Bakir A, Rowland SJ, Thompson RC (2014) Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar Coast Shelf Sci 140:14–21. https://doi.org/10.1016/j.ecss.2014.01.004

    Article  CAS  Google Scholar 

  88. Betts K (2008) Why small plastic particles may pose a big problem in the oceans. Environ Sci Technol 42:8996. https://doi.org/10.1021/es802970v

    Article  CAS  Google Scholar 

  89. Engler RE (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46:12302–12315. https://doi.org/10.1021/es3027105

    Article  CAS  Google Scholar 

  90. Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60:2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014

    Article  CAS  Google Scholar 

  91. Ivleva NP, Wiesheu AC, Niessner R (2017) Microplastic in aquatic ecosystems. Angew Chemie Int Ed 56:1720–1739. https://doi.org/10.1002/anie.201606957

    Article  CAS  Google Scholar 

  92. Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, Remy D (2013) Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts 15:1949–1956. https://doi.org/10.1039/c3em00214d

    Article  CAS  Google Scholar 

  93. Wagner M, Oehlmann J (2009) Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res 16:278–286. https://doi.org/10.1007/s11356-009-0107-7

    Article  CAS  Google Scholar 

  94. Wagner M, Oehlmann J (2011) Endocrine disruptors in bottled mineral water: estrogenic activity in the E-Screen. J Steroid Biochem Mol Biol 127:128–135. https://doi.org/10.1016/j.jsbmb.2010.10.007

    Article  CAS  Google Scholar 

  95. Kim D, Chae Y, An YJ (2017) Mixture toxicity of nickel and microplastics with different functional groups on daphnia magna. Environ Sci Technol 51:12852–12858. https://doi.org/10.1021/acs.est.7b03732

    Article  CAS  Google Scholar 

  96. Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilhermino L (2018) Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol 195:49–57. https://doi.org/10.1016/j.aquatox.2017.12.008

    Article  CAS  Google Scholar 

  97. Khan FR, Boyle D, Chang E, Bury NR (2017) Do polyethylene microplastic beads alter the intestinal uptake of Ag in rainbow trout (Oncorhynchus mykiss)? Analysis of the MP vector effect using in vitro gut sacs. Environ Pollut 231:200–206. https://doi.org/10.1016/j.envpol.2017.08.019

    Article  CAS  Google Scholar 

  98. Besseling E, Foekema EM, Heuvel-Greve V, Den JM, Koelmans AA (2017) The Effect of Microplastic on the Uptake of Chemicals by the Lugworm Arenicola marina (L.) under Environmentally Relevant Exposure Conditions. Environ Sci Technol 51:8795–8804. https://doi.org/10.1021/acs.est.7b02286

  99. Qu H, Ma R, Wang B, Yang J, Duan L, Yu G (2018) Enantiospecific toxicity, distribution and bioaccumulation of chiral antidepressant venlafaxine and its metabolite in loach (Misgurnus anguillicaudatus) co-exposed to microplastic and the drugs. J Hazard Mater 370:203–211. https://doi.org/10.1016/j.jhazmat.2018.04.041

    Article  CAS  Google Scholar 

  100. Syberg K, Nielsen A, Khan FR, Banta GT, Palmqvist A, Jepsen PM (2017) Microplastic potentiates triclosan toxicity to the marine copepod Acartia tonsa (Dana). J Toxicol Environ Heal Part A Curr 80:1369–1371. https://doi.org/10.1080/15287394.2017.1385046

  101. Zhu Z-L, Wang S-C, Zhao F-F, Wang S-G, Liu F-F, Liu G-Z (2019) Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ Pollut 246:509–517. https://doi.org/10.1016/j.envpol.2018.12.044

  102. Prata JC, Lavorante BRBO, Maria da M, da C, Guilhermino L (2018) Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat Toxicol 197:143–152. https://doi.org/10.1016/j.aquatox.2018.02.015

  103. Batel A, Linti F, Scherer M, Erdinger L, Braunbeck T (2016) Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environ Toxicol Chem 35:1656–1666. https://doi.org/10.1002/etc.3361

    Article  CAS  Google Scholar 

  104. Ma Y, Huang A, Cao S, Sun F, Wang L, Guo H, Ji R (2016) Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ Pollut 219:166–173. https://doi.org/10.1016/j.envpol.2016.10.061

    Article  CAS  Google Scholar 

  105. Rochman CM, Kurobe T, Flores I, Teh SJ (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661. https://doi.org/10.1016/j.scitotenv.2014.06.051

    Article  CAS  Google Scholar 

  106. Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC (2013) Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol 23:2388–2392. https://doi.org/10.1016/j.cub.2013.10.012

    Article  CAS  Google Scholar 

  107. Besselincg E, Wegner A, Foekema EM, Van Den Heuvel-Greve MJ, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L). Environ Sci Technol 47:593–600. https://doi.org/10.1021/es302763x

  108. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, D’Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222. https://doi.org/10.1016/j.envpol.2014.12.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank those organizations and scholars whom we have used previously findings related to this work. The authors also apologize to all intellectuals, and organizations whose involvement in the field of microplastic pollution and ecotoxicity may have been reviewed by the mistake or inadequately recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadele Assefa Aragaw .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aragaw, T.A., Mekonnen, B.A. (2021). Distribution and Impact of Microplastics in the Aquatic Systems: A Review of Ecotoxicological Effects on Biota. In: Muthu, S.S. (eds) Microplastic Pollution. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-0297-9_3

Download citation

Publish with us

Policies and ethics