Skip to main content

Deep Domain Adaptation Approach for Classification of Disaster Images

  • Conference paper
  • First Online:
Intelligent Data Communication Technologies and Internet of Things

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 57))

Abstract

In the last decade, emergency responders, government organizations and disaster response agencies have certainly acknowledged that microblogging platforms such as Twitter and Instagram can be an important source of actionable information at the time of disaster. However, researchers feel that analyzing social media data for disasters using supervised machine learning algorithms is still a challenge. During the first few hours of any disaster when labeled data is not available, the learning process gets much delayed. The first objective of this study is to explore the domain adaptation techniques by making use of labeled data of some previous disaster along with the abundance of unlabeled data that is available for the current disaster. The second objective is to apply these domain adaptation techniques on disaster-related imagery data from the microblogging platforms since imagery data has largely been unexplored as compared to textual content. To achieve these objectives, domain adaptation methods would be applied to classify the images of an ongoing disaster as informative versus non-informative. This study, for the first time, proposes a semi-supervised domain adaptation technique where the classifier is trained on three types of data, labeled data of the previous disaster, unlabeled data of current disaster and a small batch of labeled data of current disaster. Our experiments have been performed on Twitter images corresponding to three disasters. The experimental results show that there is an improvement in the accuracy of the classification model if a small batch of labeled target images is also added along with the unlabeled target images and labeled source images at the time of training. The experiment aims to make the best use of the labeled data of a previous disaster to analyze the current disaster without any delay for better response and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vieweg S, Hughes AL, Starbird K, Palen L (2010) Microblogging during two natural hazards events. In: Proceedings of the 28th international conference on human factors in computing systems, CHI 2010, p 1079. https://doi.org/10.1145/1753326.1753486

  2. Imran, M, Elbassuoni, S, Castillo, C, Diaz, F, Meier, P (2013) Extracting information nuggets from disaster—related messages in social media. In: ISCRAM 2013 10th international conference on information systems for crisis response and management, pp 1–10

    Google Scholar 

  3. Rudra K, Ghosh S, Ganguly N, Goyal P, Ghosh S (2015) Extracting situational information from microblogs during disaster events. In: 7th international conference on communication systems and networks (COMSNETS), pp 583–592. https://doi.org/10.1145/2806416.2806485

  4. Pandey MN, Natarajan S (2016) How social media can contribute during disaster events? In: 2016 international conference on advances in computing, communications and informatics, pp 1352–1356. https://doi.org/10.1109/ICACCI.2016.7732236

  5. Nguyen DT, Al Mannai KA, Joty S, Sajjad H, Imran M, Mitra P (2017) Robust classification of crisis-related data on social networks using convolutional neural networks. In: Proceedings of the 11th international conference on web and social media, ICWSM 2017. AAAI Press, pp 632–635

    Google Scholar 

  6. Basu M, Shandilya A, Ghosh K, Ghosh S (2018) Automatic matching of resource needs and availabilities in microblogs for post-disaster relief. Association for Computing Machinery (ACM), pp 25–26. https://doi.org/10.1145/3184558.3186911

  7. Purohit H, Castillo C, Imran M, Pandev R (2018) Social-EOC: serviceability model to rank social media requests for emergency operation centers. Proceedings of 2018 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 119–126. https://doi.org/10.1109/ASONAM.2018.8508709

  8. Canon MJ, Satuito A, Sy C (2019) Determining disaster risk management priorities through a neural network-based text classifier. In: Proceedings of 2018 international symposium on computer, consumer and control (IS3C 2018), pp 237–241. https://doi.org/10.1109/IS3C.2018.00067

  9. Khattar A, Quadri SMK (2020) Emerging role of artificial intelligence for disaster management based on microblogged communication. In: International conference on innovative computing and communication (ICICC 2020). https://dx.doi.org/10.2139/ssrn.3562973

  10. Alam F, Ofli F, Imran M (2018) Processing social media images by combining human and machine computing during crises. Int J Hum Comput Interact 34:311–327. https://doi.org/10.1080/10447318.2018.1427831

    Article  Google Scholar 

  11. Nguyen DT, Ofli F, Imran M, Mitra P (2017) Damage assessment from social media imagery data during disasters. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining, ASONAM 2017. Association for Computing Machinery, Inc, pp 569–576. https://doi.org/10.1145/3110025.3110109

  12. Robertson BW, Johnson M, Murthy D, Smith WR, Stephens KK (2019) Using a combination of human insights and ‘deep learning’ for real-time disaster communication. Prog Disaster Sci 2:100030. https://doi.org/10.1016/j.pdisas.2019.100030

    Article  Google Scholar 

  13. Li X, Caragea D, Zhang H, Imran M (2019) Localizing and quantifying infrastructure damage using class activation mapping approaches. Soc Netw Anal Min 9:1–15. https://doi.org/10.1007/s13278-019-0588-4

    Article  Google Scholar 

  14. Alam F, Ofli F, Imran M (2019) Descriptive and visual summaries of disaster events using artificial intelligence techniques: case studies of Hurricanes Harvey, Irma, and Maria. Behav Inf Technol 1–31. https://doi.org/10.1080/0144929X.2019.1610908

    Google Scholar 

  15. Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropagation. In: 32nd international conference on machine learning (ICML 2015), vol 2, pp 1180–1189

    Google Scholar 

  16. Li H, Guevara N, Herndon N, Caragea D, Neppalli K, Caragea C, Squicciarini A, Tapia AH (2015) Twitter mining for disaster response: a domain adaptation approach. In: ISCRAM 2015 conference proceedings—12th international conference on information systems for crisis response and management, January 2015

    Google Scholar 

  17. Li H, Caragea D, Caragea C, Herndon N (2018) Disaster response aided by tweet classification with a domain adaptation approach. J Contingencies Cris Manag 26:16–27. https://doi.org/10.1111/1468-5973.12194

    Article  Google Scholar 

  18. Alam F, Joty S, Imran M (2018) Domain adaptation with adversarial training and graph embeddings. In: ACL 2018—56th annual meeting of the association for computational linguistics proceedings conferences, Long Pap. 1, pp 1077–1087. https://doi.org/10.18653/v1/p18-1099

  19. Alam F, Ofli F, Imran M CrisisMMD: multimodal twitter datasets from natural disasters

    Google Scholar 

  20. Li X, Caragea C, Caragea D, Imran M, Ofli F (2019) Identifying disaster damage images using a domain adaptation approach. In: Proceedings of International ISCRAM Conference, May 2019, pp 633–645

    Google Scholar 

  21. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359. https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  22. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? Adv Neural Inf Process Syst 4:3320–3328

    Google Scholar 

  23. Arnold A, Nallapati R, Cohen WW (2007) A comparative study of methods for transductive transfer learning. In: Proceedings of IEEE international conference on data mining, ICDM, pp 77–82. https://doi.org/10.1109/ICDMW.2007.109

  24. Wang M, Deng W (2018) Deep visual domain adaptation: a survey. Neurocomputing 312:135–153. https://doi.org/10.1016/j.neucom.2018.05.083

    Article  Google Scholar 

  25. Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) AIDR: Artificial intelligence for disaster response. In: WWW 2014 Companion—proceedings of the 23rd international conference on world wide web. Association for Computing Machinery, Inc, pp 159–162. https://doi.org/10.1145/2567948.2577034

  26. Simonyan, K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd international conference on learning representations, iclr 2015—conference track proceedings, pp 1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Khattar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khattar, A., Quadri, S.M.K. (2021). Deep Domain Adaptation Approach for Classification of Disaster Images. In: Hemanth, J., Bestak, R., Chen, J.IZ. (eds) Intelligent Data Communication Technologies and Internet of Things. Lecture Notes on Data Engineering and Communications Technologies, vol 57. Springer, Singapore. https://doi.org/10.1007/978-981-15-9509-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9509-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9508-0

  • Online ISBN: 978-981-15-9509-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics