Skip to main content

Robust General Twin Support Vector Machine with Pinball Loss Function

  • Chapter
  • First Online:
Machine Learning for Intelligent Multimedia Analytics

Part of the book series: Studies in Big Data ((SBD,volume 82))

Abstract

Twin support vector machines (TWSVM) with hinge loss suffer from noise sensitivity and instability. To overcome these issues, pinball loss based general twin support vector machines (Pin-GTSVM) was recently proposed. However, TWSVM and Pin-GTSVM implement the empirical risk minimization principle. Also, the matrices in their dual formulations are positive semi-definite. To overcome these issues, we propose pinball loss based robust general twin support vector machines (Pin-RGTSVM). Pin-RGTSVM implements the structural risk minimization principle which embodies the marrow of statistical learning and pinball loss function makes it more robust for noisy datasets. Also, the matrices appear in the dual formulation of the proposed Pin-RGTSVM are positive definite. The incorporation of the structural risk minimization principle via introduction of the regularisation term leads to the improved generalization performance of the proposed Pin-RGTSVM. Numerical experiments and statistical evaluation on the real world benchmark datasets show the efficacy of the proposed Pin-RGTSVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  2. V.N. Vapnik, An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  3. Y.-J. Lee, O.L. Mangasarian, RSVM: reduced support vector machines, in Proceedings of the 2001 SIAM International Conference on Data Mining (SIAM, 2001), pp. 1–17

    Google Scholar 

  4. E. Osuna, R. Freund, F. Girosit, Training support vector machines: an application to face detection, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. (IEEE, 1997), pp. 130–136

    Google Scholar 

  5. T. Joachims, Text categorization with support vector machines: learning with many relevant features. in European Conference on Machine Learning (Springer, 1998), pp. 137–142

    Google Scholar 

  6. B. Richhariya, M. Tanveer, EEG signal classification using universum support vector machine. Expert Syst. Appl. 106, 169–182 (2018)

    Article  Google Scholar 

  7. Y. Li, C. Guan, Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm. Mach. Learn. 71(1), 33–53 (2008)

    Article  Google Scholar 

  8. B. Richhariya, M. Tanveer, A. Rashid, A.D.N. Initiative et al., Diagnosis of alzheimer’s disease using universum support vector machine based recursive feature elimination (usvm-rfe). Biomed. Sign. Proc. Control 59, 101903 (2020)

    Article  Google Scholar 

  9. M. Ganaie, S. Ghosh, N. Mendola, M. Tanveer, S. Jalan, Identification of chimera using machine learning. Chaos: An Interdisci. J. Nonlinear Sci. 30(6), 063128 (2020)

    Google Scholar 

  10. O.L. Mangasarian, E.W. Wild, Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 69–74 (2005)

    Article  Google Scholar 

  11. Jayadeva, R. Khemchandani, S. Chandra, Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905–910 (2007)

    Google Scholar 

  12. Y.-H. Shao, C.-H. Zhang, X.-B. Wang, N.-Y. Deng, Improvements on twin support vector machines. IEEE Trans. Neural Netw. 22(6), 962–968 (2011)

    Article  Google Scholar 

  13. B. Richhariya, M. Tanveer, A.D.N. Initiative et al., Least squares projection twin support vector clustering (lsptsvc). Inf. Sci. (2020)

    Google Scholar 

  14. Z. Wang, Y.-H. Shao, L. Bai, N.-Y. Deng, Twin support vector machine for clustering. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2583–2588 (2015)

    Article  MathSciNet  Google Scholar 

  15. M. Tanveer, T. Gupta, M. Shah, Pinball loss twin support vector clustering. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) (2020)

    Google Scholar 

  16. M.A. Ganaie, M. Tanveer, P.N. Suganthan, Oblique decision tree ensemble via twin bounded SVM. Expert Syst. Appl. 143, 113072 (2020)

    Article  Google Scholar 

  17. M. Ganaie, M. Tanveer, LSTSVM classifier with enhanced features from pre-trained functional link network. Appl. Soft Comput. p. 106305 (2020)

    Google Scholar 

  18. M.A. Kumar, M. Gopal, Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 36(4), 7535–7543 (2009)

    Article  Google Scholar 

  19. J.A. Nasiri, N.M. Charkari, K. Mozafari, Energy-based model of least squares twin support vector machines for human action recognition. Sign. Proc. 104, 248–257 (2014)

    Article  Google Scholar 

  20. M. Tanveer, M.A. Khan, S.-S. Ho, Robust energy-based least squares twin support vector machines. Appl. Intell. 45(1), 174–186 (2016)

    Article  Google Scholar 

  21. B. Richhariya, M. Tanveer, An efficient angle based universum least squares twin support vector machine for pattern classification. ACM Trans. Internet Technol. (TOIT) (2020)

    Google Scholar 

  22. M. Tanveer, Newton method for implicit lagrangian twin support vector machines. Int. J. Mach. Learn. Cyber. 6(6), 1029–1040 (2015)

    Article  Google Scholar 

  23. M. Tanveer, Robust and sparse linear programming twin support vector machines. Cognitive Comput. 7(1), 137–149 (2015)

    Google Scholar 

  24. B. Richhariya, M. Tanveer, Universum least squares twin parametric-margin support vector machine, in 2020 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2020)

    Google Scholar 

  25. M. Tanveer, Application of smoothing techniques for linear programming twin support vector machines. Knowl. Inf. Syst. 45(1), 191–214 (2015)

    Article  Google Scholar 

  26. B. Richhariya, M. Tanveer, A reduced universum twin support vector machine for class imbalance learning. Pattern Recog. 107150 (2020)

    Google Scholar 

  27. M. Ganaie, M. Tanveer, P. Suganthan, Regularized robust fuzzy least squares twin support vector machine for class imbalance learning, in 2020 International Joint Conference on Neural Networks (IJCNN). (IEEE, 2020)

    Google Scholar 

  28. M. Tanveer, C. Gautam, P. Suganthan, Comprehensive evaluation of twin SVM based classifiers on UCI datasets. Appl. Soft Comput. 83, 105617 (2019)

    Article  Google Scholar 

  29. M. Tanveer, A. Sharma, P.N. Suganthan, Least squares KNN-based weighted multiclass twin SVM. Neurocomputing (2020)

    Google Scholar 

  30. P.-Y. Hao, New support vector algorithms with parametric insensitive/margin model. Neural Networks 23(1), 60–73 (2010)

    Article  Google Scholar 

  31. X. Peng, TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recogn. 44(10–11), 2678–2692 (2011)

    Article  Google Scholar 

  32. X. Huang, L. Shi, J.A. Suykens, Support vector machine classifier with pinball loss. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 984–997 (2013)

    Article  Google Scholar 

  33. R. Koenker, K.F. Hallock, Quantile regression. J. Econom. Perspect. 15(4), 143–156 (2001)

    Article  Google Scholar 

  34. A. Christmann, I. Steinwart, How SVMs can estimate quantiles and the median. in Advances in Neural Information Processing Systems (2008), pp. 305–312

    Google Scholar 

  35. X. Shen, L. Niu, Z. Qi, Y. Tian, Support vector machine classifier with truncated pinball loss. Pattern Recogn. 68, 199–210 (2017)

    Article  Google Scholar 

  36. Y. Xu, Z. Yang, X. Pan, A novel twin support-vector machine with pinball loss. IEEE Trans. Neural Networks Learn. Syst. 28(2), 359–370 (2016)

    Article  MathSciNet  Google Scholar 

  37. M. Tanveer, A. Tiwari, R. Choudhary, S. Jalan, Sparse pinball twin support vector machines. Appl. Soft Comput. 78, 164–175 (2019)

    Article  Google Scholar 

  38. M. Tanveer, T. Rajani, M.A. Ganaie, Improved sparse pinball twin SVM, in 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) (IEEE, 2019), pp. 3287–3291

    Google Scholar 

  39. M. Tanveer, A. Sharma, P.N. Suganthan, General twin support vector machine with pinball loss function. Inf. Sci. 494, 311–327 (2019)

    Article  MathSciNet  Google Scholar 

  40. D. Dua, C. Graff, UCI machine learning repository (2017). [Online]. Available: http://archive.ics.uci.edu/ml

  41. J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, F. Herrera, Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult-Valued Log. Soft Comput. 17 (2011)

    Google Scholar 

  42. J. Demšar, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)

    Google Scholar 

  43. P. Nemenyi, Distribution-free multiple comparisons, in Biometrics, vol. 18, no. 2. International Biometric Soc 1441 I ST, NW, Suite 700, Washington, DC 20005-2210, 1962, p. 263

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Council of Scientific & Industrial Research (CSIR), New Delhi (Grant No. 22(0751)/17/EMR-II) and Science and Engineering Research Board (SERB) (Grant Nos. SB/S2/RJN-001/2016, ECR/2017/000053). We gratefully acknowledge the Indian Institute of Technology Indore for providing facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tanveer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganaie, M.A., Tanveer, M. (2021). Robust General Twin Support Vector Machine with Pinball Loss Function. In: Kumar, P., Singh, A.K. (eds) Machine Learning for Intelligent Multimedia Analytics. Studies in Big Data, vol 82. Springer, Singapore. https://doi.org/10.1007/978-981-15-9492-2_6

Download citation

Publish with us

Policies and ethics