Skip to main content

Elucidation of Neural Circuits Involved in the Regulation of Sleep/Wakefulness Using Optogenetics

  • Chapter
  • First Online:
Optogenetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

Abstract

Although sleep is an absolutely essential physiological phenomenon for maintaining normal health in animals, little is known about its function to date. In this section, I introduce the application of optogenetics to freely behaving animals for the purpose of characterizing neural circuits involved in the regulation of sleep/wakefulness. Applying optogenetics to the specific neurons involved in sleep/wakefulness regulation enabled the precise control of the sleep/wakefulness states between wakefulness, non-rapid eye movement (NREM) sleep, and REM sleep states. For example, selective activation of orexin neurons using channelrhodopsin-2 and melanopsin induced a transition from sleep to wakefulness. In contrast, suppression of these neurons using halorhodopsin and archaerhodopsin induced a transition from wakefulness to NREM sleep and increased the time spent in NREM sleep. Selective activation of melanin-concentrating hormone (MCH) neurons induced a transition from NREM sleep to REM sleep and prolonged the time spent in REM sleep, which was accompanied by a decrease in NREM sleep time. Optogenetics was first introduced to orexin neurons in 2007 and has since rapidly spread throughout the field of neuroscience. In the last 13 years or so, neural nuclei and the cell types that control sleep/wakefulness have been identified. The use of optogenetic studies has greatly contributed to the elucidation of the neural circuits involved in the regulation of sleep/wakefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

Adeno-associated virus

ArchR:

Archaerhodopsin-3

ArchT:

Archaerhodopsin TP009

ChR2:

Channelrhodopsin-2

dDpMe:

Deep mesencephalic nucleus

DR:

Dorsal raphe

EEGs:

Electroencephalograms

EMGs:

Electromyograms

GPCR:

G Protein-coupled receptor

HaloR:

Halorhodopsin

LC:

Locus coeruleus

LDT:

Laterodorsal tegmental nucleus

MCH:

Melanin-concentrating hormone

MnPO:

Median preoptic nucleus

NA:

Numerical aperture

NREM:

Non-rapid eye movement

OPN4:

Melanopsin

OX1R:

Orexin 1 receptor

OX2R:

Orexin 2 receptor

PAG:

Periaqueductal gray

PBN:

Parabrachial nucleus

PPT:

Pedunculopontine tegmental nucleus

REM:

Rapid eye movement

SLD:

Sublaterodorsal nucleus

TMN:

Tuberomammillary nucleus

VLPO:

Ventrolateral preoptic area

References

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM (2014) The GABAergic parafacial zone is a medullary slow wave sleep–promoting center. Nat Neurosci 17(9):1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellesi M, de Vivo L, Tononi G, Cirelli C (2015) Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 13:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyce R, Glasgow SD, Williams S (2016) Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352:812–816

    Article  CAS  PubMed  Google Scholar 

  • Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    Article  CAS  PubMed  Google Scholar 

  • Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci U S A 77(5):3033–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghandour K, Ohkawa N, Fung CCA, Asai H, Saitoh Y, Takekawa T, Okubo-Suzuki R, Soya S, Nishizono H, Matsuo M, Osanai M, Sato M, Ohkura M, Nakai J, Hayashi Y, Sakurai T, Kitamura T, Fukai T, Inokuchi K (2019) Orchestrated ensemble activities constitute a hippocampal memory engram. Nat Commun 10(1):2637

    Article  PubMed  PubMed Central  Google Scholar 

  • Halassa MM, Florian C, Fellin T, Munoz JR, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami KI, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354

    Article  CAS  PubMed  Google Scholar 

  • Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58

    Article  CAS  PubMed  Google Scholar 

  • Irmak SO, de Lecea L (2014) Basal forebrain cholinergic modulation of sleep transitions. Sleep 37(12):1941–1951

    Article  PubMed  Google Scholar 

  • Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M, Narita M (2013) Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 6:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, Ohmura Y, Mizoguchi H, Kimura K, Yoshioka M, Terao A, Kilduff TS, Yamanaka A (2019) REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 365(6459):1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krenzer M, Anaclet C, Vetrivelan R, Wang N, Vong L, Lowell BB, Fuller PM, Lu J (2011) Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS One 6(10):e24998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto D, Hirai D, Fung CCA, Inutsuka A, Odagawa M, Suzuki T, Boehringer R, Adaikkan C, Matsubara C, Matsuki N, Fukai T, Mchugh TJ, Yamanaka A, Murayama M (2016) Top-down cortical input during NREM sleep consolidates perceptual memory. Science 352:1315–1318

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997

    Article  CAS  PubMed  Google Scholar 

  • Portas CM, Bjorvatn B, Fagerland S, Gronli J, Mundal V, Sorensen E, Ursin R (1998) On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 83(3):807–814

    Article  CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Gilliland MA, Bergmann BM, Winter JB (1983) Physiological correlates of prolonged sleep deprivation in rats. Science 221:182–184

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RE, Haynes AC, Carr SA, Annan RS, Mcnulty DE, Liu W-s, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  CAS  PubMed  Google Scholar 

  • Szymusiak R, Iriye T, McGinty D (1989) Sleep-waking discharge of neurons in the posterior lateral hypothalamic area of cats. Brain Res Bull 23(1–2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi S, Tsunematsu T, Black SW, Tominaga M, Maruyama M, Takagi K, Minokoshi Y, Sakurai T, Kilduff TS, Yamanaka A (2014) Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J Neurosci 34:6495–6509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163(1):135–150

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Fu L-Y, Yamanaka A, Ichiki K, Tanoue A, Sakurai T, van den Pol AN (2008) Vasopressin increases locomotion through a V1a receptor in orexin/hypocretin neurons: implications for water homeostasis. J Neurosci 28:228–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A (2011) Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 31(29):10529–10539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunematsu T, Tabuchi S, Tanaka KF, Boyden ES, Tominaga M, Yamanaka A (2013a) Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 255:64–74

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Tanaka KF, Yamanaka A, Koizumi A (2013b) Ectopic expression of melanopsin in orexin/hypocretin neurons enables control of wakefulness of mice in vivo by blue light. Neurosci Res 75:23–28

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34(20):6896–6909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RH, Tsunematsu T, Thomas AM, Bogyo K, Yamanaka A, Kilduff TS (2019) Transgenic archaerhodopsin-3 expression in hypocretin/orexin neurons engenders cellular dysfunction and features of type 2 narcolepsy. J Neurosci 39(47):9435–9452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA, Leonard CS, Richardson JA, Hammer RE, Yanagisawa M (2003) Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38:715–730

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang W-C, Weissbourd B, Sakai N, Luo L, Nishino S, Dan Y (2015) Basal forebrain circuit for sleep-wake control. Nat Neurosci 18:1641–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka A (2012) Optogenetical approach to control the activity of specific types of neurons in vivo. Nihon Yakurigaku Zasshi 140(6):280–284

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami KI, Sugiyama F, Goto K, Yanagisawa M, Sakurai T (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–713

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Ye Z, Houston CM, Zecharia AY, Ma Y, Zhang Z, Uygun DS, Parker S, Vyssotski AL, Yustos R, Franks NP, Brickley SG, Wisden W (2015) Wakefulness is governed by GABA and histamine cotransmission. Neuron 87:1–15

    Article  Google Scholar 

Download references

Acknowledgments

T.T. is supported by PRESTO from JST (JPMJPR1887), JSPS Grant-in-Aid for Research Activity Start-up (17H06520), and JSPS Grant-in-Aid for Scientific Research on Innovative Areas (20H05047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomi Tsunematsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsunematsu, T. (2021). Elucidation of Neural Circuits Involved in the Regulation of Sleep/Wakefulness Using Optogenetics. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_25

Download citation

Publish with us

Policies and ethics