Skip to main content

Data Science for Big Data Applications and Services: Data Lake Management, Data Analytics and Visualization

  • Conference paper
  • First Online:
Big Data Analyses, Services, and Smart Data (BIGDAS 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 899))

Included in the following conference series:

Abstract

Huge amounts of useful data are easily generated and gathered currently at a rapid rate from a broad range of rich data sources in numerous applications and services in the real world. Data science applies database techniques, scientific and engineering methods, mathematical and statistical models, data mining algorithms, and/or machine learning tools to manage data, extract the useful information and discover the new knowledge from these big data. This explains why data science for big data applications and services has become a fundamental technology in providing novel solutions in various areas in business, engineering, health, humanities, natural sciences, social sciences, etc. (e.g., healthcare, manufacturing, social life). Usually, data science focuses on big data management, analytics and visualization. Once big data are managed (i.e., captured, curated, managed and processed), big data are analyzed with an aim to discover interesting knowledge and information, which is usually presented in text or table form. Consistent with a proverb that “a picture is worth a thousand words”, big data visualization as well as visual analytics helps to reveal and explain the discovered interesting knowledge and information. In this paper, we present (a) big data management with focus on information fusion and the data lake; (b) big data analytics and mining, with focus on frequent patterns; as well as (c) big data visualization with focus on a few visual analytic systems for visualizing big data and mined frequent patterns. For illustration, we discuss these three aspects of data science on coronavirus disease 2019 (COVID-19) data. This highlights some important aspects of data science for big data analyses, services, and smart data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jang, S., Lkhagvadorj, B., Nasridinov, A.: Preference-aware music recommendation using song lyrics. In: Lee, W., Leung, C.K. (eds.) BIGDAS 2017. AISC, vol. 770, pp. 183–195. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0695-2_18

    Chapter  Google Scholar 

  2. Jiang, F., Leung, C.K., Tanbeer, S.K.: Finding popular friends in social networks. In: CGC 2012, pp. 501–508. IEEE (2012). https://doi.org/10.1109/CGC.2012.99

  3. Leung, C.K.-S., Tanbeer, S.K., Cameron, J.J.: Interactive discovery of influential friends from social networks. Soc. Netw. Anal. Min. 4(1), 1–13 (2014). https://doi.org/10.1007/s13278-014-0154-z

    Article  Google Scholar 

  4. Ryu, G.-A., Lee, J.-W., Jeong, J.-S., Kim, M., Yoo, K.-H.: Real-time smart safe-return-home service based on big data analytics. In: Lee, W., Leung, C.K. (eds.) BIGDAS 2017. AISC, vol. 770, pp. 197–209. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0695-2_19

    Chapter  Google Scholar 

  5. Tanbeer, S.K., Leung, C.K., Cameron, J.J.: Interactive mining of strong friends from social networks and its applications in e-commerce. JOCEC 24(2–3), 157–173 (2014). https://doi.org/10.1080/10919392.2014.896715

    Article  Google Scholar 

  6. Khan, N., Naim, A., Hussain, M.R., Naveed, Q.N., Ahmad, N., Qamar, S.: The 51 V’s of big data: survey, technologies, characteristics, opportunities, issues and challenges. In: COINS 2019, pp. 19–24. ACM (2019). https://doi.org/10.1145/3312614.3312623

  7. Shin, W., Baek, N.: Design and implementation of a sunshine duration calculation system with massively parallel processing. In: Lee, W., Leung, C.K. (eds.) BIGDAS 2017. AISC, vol. 770, pp. 91–97. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0695-2_11

    Chapter  Google Scholar 

  8. Hoi, C.S.H., Khowaja, D., Leung, C.K.: Constrained frequent pattern mining from big data via crowdsourcing. In: Lee, W., Leung, C.K. (eds.) BIGDAS 2017. AISC, vol. 770, pp. 69–79. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0695-2_9

    Chapter  Google Scholar 

  9. Leung, C.K.: Frequent itemset mining with constraints. In: Liu, L, Özsu, M.T. (eds.) Encyclopedia of Database Systems, 2nd edn. pp. 1531–1536. Springer, New York (2018). https://doi.org/10.1007/978-1-4614-8265-9_17

  10. Leung, C.K., Deng, D., Hoi, C.S.H., Lee, W.: Constrained big data mining in an edge computing environment. In: Lee, W., Leung, C.K. (eds.) BIGDAS 2017. AISC, vol. 770, pp. 61–68. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0695-2_8

    Chapter  Google Scholar 

  11. Li, H., Lee, J., Mi, H., Yin, M.: Finding good subtrees for constraint optimization problems using frequent pattern mining. In: AAAI 2020, pp. 1577–1584 (2020)

    Google Scholar 

  12. Wang, C., Zheng, X.: Application of improved time series Apriori algorithm by frequent itemsets in association rule data mining based on temporal constraint. Evol. Intell. 13(1), 39–49 (2019). https://doi.org/10.1007/s12065-019-00234-5

    Article  Google Scholar 

  13. Braun, P., Cuzzocrea, A., Leung, C.K., Pazdor, A.G.M., Souza, J.: Item-centric mining of frequent patterns from big uncertain data. Procedia Comput. Sci. 126, 1875–1884 (2018). https://doi.org/10.1016/j.procs.2018.08.075

    Article  Google Scholar 

  14. Leung, C.K.-S.: Uncertain frequent pattern mining. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 339–367. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2_14

    Chapter  MATH  Google Scholar 

  15. Leung, C.K., Hoi, C.S.H., Pazdor, A.G.M., Wodi, B.H., Cuzzocrea, A.: Privacy-preserving frequent pattern mining from big uncertain data. In: IEEE BigData 2018, pp. 5101–5110 (2018). https://doi.org/10.1109/BigData.2018.8622260

  16. Leung, C.K.-S., Mateo, M.A.F., Brajczuk, D.A.: A tree-based approach for frequent pattern mining from uncertain data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 653–661. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68125-0_61

    Chapter  Google Scholar 

  17. Lin, J.C.-W., Li, T., Pirouz, M., Zhang, J., Fournier-Viger, P.: High average-utility sequential pattern mining based on uncertain databases. KAIS 62(3), 1199–1228 (2019). https://doi.org/10.1007/s10115-019-01385-8

    Article  Google Scholar 

  18. Ovi, J.A., Ahmed, C.F., Leung, C.K., Pazdor, A.G.M.: Mining weighted frequent patterns from uncertain data streams. In: Lee, S., Ismail, R., Choo, H. (eds.) IMCOM 2019. AISC, vol. 935, pp. 917–936. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19063-7_72

    Chapter  Google Scholar 

  19. Rahman, M.M., Ahmed, C.F., Leung, C.K.: Mining weighted frequent sequences in uncertain databases. Inf. Sci. 479, 76–100 (2019). https://doi.org/10.1016/j.ins.2018.11.026

    Article  Google Scholar 

  20. Ma, C., Wang, B., Jooste, K., Zhang, Z., Ping, Y.: Practical privacy-preserving frequent itemset mining on supermarket transactions. IEEE Syst. J. 14(2), 1992–2002 (2020). https://doi.org/10.1109/JSYST.2019.2922281

    Article  Google Scholar 

  21. Qiu, S., Wang, B., Li, M., Liu, J., Shi, Y.: Toward practical privacy-preserving frequent itemset mining on encrypted cloud data. IEEE TCC 8(1), 312–323 (2020). https://doi.org/10.1109/TCC.2017.2739146

    Article  Google Scholar 

  22. Telikani, A., Gandomi, A.H., Shahbahrami, A., Dehkordi, M.N.: Privacy-preserving in association rule mining using an improved discrete binary artificial bee colony. ESWA 144, 113097:1–113097:19 (2020). https://doi.org/10.1016/j.eswa.2019.113097

    Article  Google Scholar 

  23. Teo, S.G., Cao, J., Lee, V.C.S.: DAG: a general model for privacy-preserving data mining. IEEE TKDE 32(1), 40–53 (2020). https://doi.org/10.1109/TKDE.2018.2880743

    Article  Google Scholar 

  24. Wodi, B.H., Leung, C.K., Cuzzocrea, A., Sourav, S.: Fast privacy-preserving keyword search on encrypted outsourced data. In: IEEE BigData 2019, pp. 6266–6275 (2019). https://doi.org/10.1109/BigData47090.2019.9046058

  25. Cuzzocrea, A., Jiang, F., Leung, C.K., Liu, D., Peddle, A., Tanbeer, S.K.: Mining popular patterns: a novel mining problem and its application to static transactional databases and dynamic data streams. In: Hameurlain, A., Küng, J., Wagner, R., Cuzzocrea, A., Dayal, U. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXI. LNCS, vol. 9260, pp. 115–139. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47804-2_6

    Chapter  Google Scholar 

  26. Ishita, S.Z., Ahmed, C.F., Leung, C.K., Hoi, C.H.S.: Mining regular high utility sequential patterns in static and dynamic databases. In: Lee, S., Ismail, R., Choo, H. (eds.) IMCOM 2019. AISC, vol. 935, pp. 897–916. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19063-7_71

    Chapter  Google Scholar 

  27. Leung, C.K., Khan, Q.I.: DSTree: a tree structure for the mining of frequent sets from data streams. In: IEEE ICDM 2006, pp. 928–932 (2006). https://doi.org/10.1109/ICDM.2006.62

  28. Nguyen, T.T., Weidlich, M., Zheng, B., Yin, H., Nguyen, Q.V.H., Stantic, B.: From anomaly detection to rumour detection using data streams of social platforms. PVLDB 12(9), 1016–1029 (2019). https://doi.org/10.14778/3329772.3329778

    Article  Google Scholar 

  29. Lee, K.Y., Suh, Y.-K.: Efficient mining of time interval-based association rules. In: Lee, W., Leung, C.K. (eds.) BIGDAS 2017. AISC, vol. 770, pp. 121–125. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0695-2_13

    Chapter  Google Scholar 

  30. Rizvee, R.A., Shahin, M.S.H., Ahmed, C.F., Leung, C.K., Deng, D., Mai, J.J.: Sliding window based weighted periodic pattern mining over time series data. In: ICDM 2019, pp. 118–132 (2019)

    Google Scholar 

  31. Fariha, A., Ahmed, C.F., Leung, C.K.-S., Abdullah, S.M., Cao, L.: Mining frequent patterns from human interactions in meetings using directed acyclic graphs. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 38–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37453-1_4

    Chapter  Google Scholar 

  32. Islam, M.A., Ahmed, C.F., Leung, C.K., Hoi, C.S.H.: WFSM-MaxPWS: an efficient approach for mining weighted frequent subgraphs from edge-weighted graph databases. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018, Part III. LNCS (LNAI), vol. 10939, pp. 664–676. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93040-4_52

    Chapter  Google Scholar 

  33. Song, J.J., Kang, I., Lee, W., Kim, J., Lee, J.: Discussions on subgraph ranking for keyworded search. In: IEEE Cybermatics 2018, pp. 935–936 (2018). https://doi.org/10.1109/Cybermatics_2018.2018.00179

  34. Hoi, C.S.H., Leung, C.K., Tran, K., Cuzzocrea, A., Bochicchio, M., Simonetti, M.: Supporting social information discovery from big uncertain social key-value data via graph-like metaphors. In: Xiao, J., Mao, Z.-H., Suzumura, T., Zhang, L.-J. (eds.) ICCC 2018. LNCS, vol. 10971, pp. 102–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94307-7_8

    Chapter  Google Scholar 

  35. Braun, P., Cuzzocrea, A., Keding, T.D., Leung, C.K., Pazdor, A.G.M., Sayson, D.: Game data mining: clustering and visualization of online game data in cyber-physical worlds. Procedia Comput. Sci. 112, 2259–2268 (2017). https://doi.org/10.1016/j.procs.2017.08.141

    Article  Google Scholar 

  36. Jentner, W., Keim, D.A.: Visualization and visual analytic techniques for patterns. In: Fournier-Viger, P., Lin, J.C.-W., Nkambou, R., Vo, B., Tseng, V.S. (eds.) High-Utility Pattern Mining. SBD, vol. 51, pp. 303–337. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04921-8_12

    Chapter  Google Scholar 

  37. Kovalerchuk, B.: Interpretable knowledge discovery reinforced by visual methods. In: ACM KDD 2019, pp. 3219–3220 (2019). https://doi.org/10.1145/3292500.3332278

  38. Leung, C.K.: Data and visual analytics for emerging databases. In: Lee, W., Choi, W., Jung, S., Song, M. (eds.) Proceedings of the 7th International Conference on Emerging Databases. LNEE, vol. 461, pp. 203–213. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6520-0_21

    Chapter  Google Scholar 

  39. Choi, S., Cho, S.: Sensor information fusion by integrated AI to control public emotion in a cyber-physical environment. Sensors 18, 3767:1–3767:21 (2018). https://doi.org/10.3390/s18113767

    Article  Google Scholar 

  40. Lenzerini, M.: Data integration: a theoretical perspective. In: ACM SIGMOD-SIGACT-SIGART PODS 2002, pp. 233–246 (2002). https://doi.org/10.1145/543613.543644

  41. Bogatu, A., Fernandes, A.A.A., Paton, N.W., Konstantinou, N.: Dataset discovery in data lakes. In: IEEE ICDE 2020, pp. 709–720 (2020). https://doi.org/10.1109/ICDE48307.2020.00067

  42. Giudice, P.L., Musarella, L., Sofo, G., Ursino, D.: An approach to extracting complex knowledge patterns among concepts belonging to structured, semi-structured and unstructured sources in a data lake. Inf. Sci. 478, 606–626 (2019). https://doi.org/10.1016/j.ins.2018.11.052

    Article  Google Scholar 

  43. Nargesian, F., Zhu, E., Miller, R.J., Pu, K.Q., Arocena, P.C.: Data lake management: challenges and opportunities. PVLDB 12(12), 1986–1989 (2019). https://doi.org/10.14778/3352063.3352116

    Article  Google Scholar 

  44. Zhang, Y., Ives, Z.G.: Finding related tables in data lakes for interactive data science. In: ACM SIGMOD 2020, pp. 1951–1966 (2020). https://doi.org/10.1145/3318464.3389726

  45. Hubail, M.A., Alsuliman, A., Blow, M., Carey, M.J., Lychagin, D., Maxon, I., Westmann, T.: Couchbase analytics: NoETL for scalable NoSQL data analysis. PVLDB 12(12), 2275–2286 (2019). https://doi.org/10.14778/3352063.3352143

    Article  Google Scholar 

  46. Lakshmanan, L.V.S., Leung, C.K., Ng, R.T.: The segment support map: scalable mining of frequent itemsets. ACM SIGKDD Explorations 2(2), 21–27 (2000). https://doi.org/10.1145/380995.381005

    Article  Google Scholar 

  47. Li, Y., Xu, W.: PrivPy: general and scalable privacy-preserving data mining. In: ACM KDD 2019, pp. 1299–1307 (2019). https://doi.org/10.1145/3292500.3330920

  48. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: MCC 2012, pp. 13–16. ACM (2012). https://doi.org/10.1145/2342509.2342513

  49. Braun, P., Cuzzocrea, A., Leung, C.K., Pazdor, A.G.M., Souza, J., Tanbeer, S.K.: Pattern mining from big IoT data with fog computing: models, issues, and research perspectives. In: IEEE/ACM CCGrid 2019, pp. 854–891. IEEE (2019). https://doi.org/10.1109/CCGRID.2019.00075

  50. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016). https://doi.org/10.1109/JIOT.2016.2579198

    Article  Google Scholar 

  51. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalalid, F., Niakanlahiji, A., Kong, J., Jue, J.P.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Archit. 98, 289–330 (2019). https://doi.org/10.1016/j.sysarc.2019.02.009

    Article  Google Scholar 

  52. Keim, D.A., Kriegel, H.: Visualization techniques for mining large databases: a comparison. IEEE TKDE 8(6), 923–938 (1996). https://doi.org/10.1109/69.553159

    Article  Google Scholar 

  53. Ankerst, M., Elsen, C., Ester, M., Kriegel, H.: Visual classification: an interactive approach to decision tree construction. In: ACM KDD 1999, pp. 392–396 (1999). https://doi.org/10.1145/312129.312298

  54. Hassan, M.R., Ramamohanarao, K., Karmakar, C., Hossain, M.M., Bailey, J.: A novel scalable multi-class ROC for effective visualization and computation. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS (LNAI), vol. 6118, pp. 107–120. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13657-3_14

    Chapter  Google Scholar 

  55. Kovalerchuk, B.: Visual Knowledge Discovery and Machine Learning. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73040-0

  56. Munzner, T., Kong, Q., Ng, R.T., Lee, J., Klawe, J., Radulovic, D., Leung, C.K.: Visual mining of power sets with large alphabets. Technical report, UBC CS TR-2005-25 (2005)

    Google Scholar 

  57. Wong, P.C., Cowley, W., Foote, H., Jurrus, E., Thomas, J.: Visualising sequential patterns for text mining. In: IEEE InfoVis 2000, pp. 105–111 (2000). https://doi.org/10.1109/INFVIS.2000.885097

  58. Yang, L.: Pruning and visualising generalized association rules in parallel coordinates. IEEE TKDE 17(1), 60–70 (2005). https://doi.org/10.1109/TKDE.2005.14

    Article  Google Scholar 

  59. Leung, C.K., Irani, P.P., Carmichael, C.L.: FIsViz: a frequent itemset visualizer. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 644-652. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68125-0_60

  60. Leung, C.K., Irani, P.P., Carmichael, C.L.: WiFIsViz: effective visualisation of frequent itemsets. In: IEEE ICDM 2008, pp. 875–880 (2008). https://doi.org/10.1109/ICDM.2008.93

  61. Leung, C.K., Kononov, V.V., Pazdor, A.G.M.: PyramidViz: visual analytics and big data visualization of frequent patterns. In: IEEE DASC-PICom-DataCom-CyberSciTech 2016, pp. 913–916 (2016). https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.158

  62. Leung, C.K., Jiang, F., Irani, P.P.: FpMapViz: a space-filling visualization for frequent patterns. In: IEEE ICDM 2011 Workshops, pp. 804–811 (2011) https://doi.org/10.1109/ICDMW.2011.86

  63. Alallah, F., Jin, D., Irani, P.: OA-graphs: orientation agnostic graphs for improving the legibility of charts on horizontal displays. In: ACM ITS 2010, pp. 211–220 (2010). https://doi.org/10.1145/1936652.1936692

  64. Leung, C.K.-S., Jiang, F.: RadialViz: an orientation-free frequent pattern visualizer. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part II. LNCS (LNAI), vol. 7302, pp. 322–334. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30220-6_27

    Chapter  Google Scholar 

  65. Dubois, P.M.J., Han, Z., Jiang, F., Leung, C.K.: An interactive circular visual analytic tool for visualization of web data. In: IEEE/WIC/ACM WI 2016, pp. 709–712. IEEE (2016). https://doi.org/10.1109/WI.2016.0127

  66. Leung, C.K., Zhang, Y.: An HSV-based visual analytic system for data science on music and beyond. Int. J. Art Cult. Des. Technol. (IJACDT) 8(1), 68–83 (2019). https://doi.org/10.4018/IJACDT.2019010105

    Article  Google Scholar 

  67. Leung, C.K., Zhang, Y., Hoi, C.S.H., Souza, J., Wodi, B.H.: Big data analysis and services: visualization of smart data to support healthcare analytics. In: IEEE iThings-GreenCom-CPSCom-SmartData.2019, pp. 1261–1268 (2019). https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00212

  68. Leung, C.K.: Big data analytics and mining for knowledge discovery. In: Encyclopedia of Organizational Knowledge, Administration, and Technology. IGI Global (2021). https://doi.org/10.4018/978-1-7998-3473-1

  69. Meng, F., Younas, M., Sugumaran, V. (eds.): Proceedings of the IEEE BigDataService 2019 (2019)

    Google Scholar 

  70. Haughton, D., McLaughlin, M., Mentzer, K., Zhang, C.: Movie Analytics. Springer, Cham (2015) https://doi.org/10.1007/978-3-319-09426-7

  71. Leung, C.K., Eckhardt, L.B., Sainbhi, A.S., Tran, C.T.K., Wen, Q., Lee, W.: A flexible query answering system for movie analytics. In: Cuzzocrea, A., Greco, S., Larsen, H.L., Saccà, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2019. LNCS (LNAI), vol. 11529, pp. 250–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27629-4_24

    Chapter  Google Scholar 

  72. Meredith, D. (ed.): Computational Music Analysis. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25931-4

  73. Brown, J.A., Cuzzocrea, A., Kresta, M., Kristjanson, K.D.L., Leung, C.K., Tebinka, T.W.: A machine learning system for supporting advanced knowledge discovery from chess game data. In: IEEE ICMLA 2017, pp. 649–654 (2017). https://doi.org/10.1109/ICMLA.2017.00-87

  74. Leung, C.K., Joseph, K.W.: Sports data mining: predicting results for the college football games. Procedia Comput. Sci. 35, 710–719 (2014). https://doi.org/10.1016/j.procs.2014.08.153

    Article  Google Scholar 

  75. Leung, C.K., Kanke, F., Cuzzocrea, A.: Data analytics on the board game Go for the discovery of interesting sequences of moves in joseki. Procedia Comput. Sci. 126, 831–840 (2018). https://doi.org/10.1016/j.procs.2018.08.017

    Article  Google Scholar 

  76. Morgulev, E., Azar, O.H., Lidor, R.: Sports analytics and the big-data era. Int. J. Data Sci. Anal. 5(4), 213–222 (2018). https://doi.org/10.1007/s41060-017-0093-7

    Article  Google Scholar 

  77. Seif El-Nasr, M., Drachen, A., Canossa, A. (eds.): Game Analytics. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4769-5

  78. El Atia, S., Ipperciel, D., Zaïane, O.R. (eds.): Data Mining and Learning Analytics. Wiley (2016) https://doi.org/10.1002/9781118998205

  79. Antoniou, C., Dimitriou, L., Pereira, F. (eds.): Mobility Patterns, Big Data and Transport Analytics. Elsevier (2019). https://doi.org/10.1016/C2016-0-03572-6

  80. Leung, C.K., Braun, P., Hoi, C.S.H., Souza, J., Cuzzocrea, A.: Urban analytics of big transportation data for supporting smart cities. In: Ordonez, C., Song, I.-Y., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2019. LNCS, vol. 11708, pp. 24–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27520-4_3

    Chapter  Google Scholar 

  81. Ukkusuri, S., Yang, C. (eds.): Transportation Analytics in the Era of Big Data. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-75862-6

  82. Arivaradarajan, P., Misra, G. (eds.): Omics Approaches, Technologies And Applications. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2925-8

    Book  Google Scholar 

  83. El Morr, C., Ali-Hassan, H. (eds.): Analytics in Healthcare. Springer, Cham (2019) https://doi.org/10.1007/978-3-030-04506-7

  84. Pawliszak, T., Chua, M., Leung, C.K., Tremblay-Savard, O.: Operon-based approach for the inference of rRNA and tRNA evolutionary histories in bacteria. BMC Genom. 21(Supplement 2), 252:1–252:14 (2020). https://doi.org/10.1186/s12864-020-6612-2

    Article  Google Scholar 

  85. Reddy, C.K., Aggarwal, C.C. (eds.): Healthcare Data Analytics. Chapman and Hall/CRC (2015). https://doi.org/10.1201/b18588

  86. Souza, J., Leung, C.K., Cuzzocrea, A.: An innovative big data predictive analytics framework over hybrid big data sources with an application for disease analytics. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020. AISC, vol. 1151, pp. 669–680. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44041-1_59

    Chapter  Google Scholar 

Download references

Acknowledgements

This project is partially supported by (i) Natural Sciences and Engineering Research Council of Canada (NSERC) as well as (ii) University of Manitoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carson K. Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leung, C.K. (2021). Data Science for Big Data Applications and Services: Data Lake Management, Data Analytics and Visualization. In: Lee, W., Leung, C.K., Nasridinov, A. (eds) Big Data Analyses, Services, and Smart Data. BIGDAS 2018. Advances in Intelligent Systems and Computing, vol 899. Springer, Singapore. https://doi.org/10.1007/978-981-15-8731-3_3

Download citation

Publish with us

Policies and ethics