Skip to main content

SynCGAN: Using Learnable Class Specific Priors to Generate Synthetic Data for Improving Classifier Performance on Cytological Images

  • Conference paper
  • First Online:
Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG 2019)

Abstract

One of the most challenging aspects of medical image analysis is the lack of a high quantity of annotated data. This makes it difficult for deep learning algorithms to perform well due to a lack of variations in the input space. While generative adversarial networks have shown promise in the field of synthetic data generation, but without a carefully designed prior the generation procedure can not be performed well. In the proposed approach we have demonstrated the use of automatically generated segmentation masks as learnable class-specific priors to guide a conditional GAN for the generation of patho-realistic samples for cytology image. We have observed that augmentation of data using the proposed pipeline called “SynCGAN” improves the performance of state of the art classifiers such as ResNet-152, DenseNet-161, Inception-V3 significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  2. Bissoto, A., Perez, F., Valle, E., Avila, S.: Skin lesion synthesis with generative adversarial networks. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 294–302. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_32

    Chapter  Google Scholar 

  3. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Gan-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)

    Article  Google Scholar 

  4. Ghosh, S., Das, N., Das, I.S., Maulik, U.: Understanding deep learning techniques for image segmentation. ArXiv abs/1907.06119 (2019)

    Google Scholar 

  5. Ghosh, S., Das, N., Nasipuri, M.: Reshaping inputs for convolutional neural network: some common and uncommon methods. Pattern Recogn. 93, 79–94 (2019)

    Article  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  10. Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J.: Computer-aided diagnosis of breast cancer using gaussian mixture cytological image segmentation. J. Med. Inf. Technol. 17 (2011)

    Google Scholar 

  11. Kumar, S., Gupta, M.D.: C+GAN: complementary fashion item recommendation. arXiv preprint arXiv:1906.05596 (2019)

  12. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  13. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  14. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  15. Tom, F., Sheet, D.: Simulating patho-realistic ultrasound images using deep generative networks with adversarial learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1174–1177. IEEE (2018)

    Google Scholar 

  16. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgement

This work is funded by SERB (DST), Govt. of India (Ref no. EEQ/2018/000963). The authors are thankful to Theism Medical Diagnostics Centre, Kolkata, West Bengal, India for providing cytology samples and also thanks to Centre for Microprocessor Application for Training, Education, and Research, Jadavpur University for providing additional infrastructure for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaran Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dey, S., Das, S., Ghosh, S., Mitra, S., Chakrabarty, S., Das, N. (2020). SynCGAN: Using Learnable Class Specific Priors to Generate Synthetic Data for Improving Classifier Performance on Cytological Images. In: Babu, R.V., Prasanna, M., Namboodiri, V.P. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2019. Communications in Computer and Information Science, vol 1249. Springer, Singapore. https://doi.org/10.1007/978-981-15-8697-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8697-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8696-5

  • Online ISBN: 978-981-15-8697-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics