Skip to main content

Manipulator Control Law Design Based on Backstepping and ADRC Methods

  • Conference paper
  • First Online:
Proceedings of 2020 Chinese Intelligent Systems Conference (CISC 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 705))

Included in the following conference series:

Abstract

A backstepping-ADRC control law is designed for one-degree of freedom (DOF) link manipulator system with internal and external factor uncertainty. First, the dynamic model of the manipulator is established, and the extended state observer of ADRC is used to estimate the total disturbance. Second, in order to improve the tracking accuracy of position signal, the nonlinear error feedback control law is improved by combining backstepping control method. Finally, the control law designed is simulated and compared. The effectiveness of the proposed method is varied by the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan, X.U., Wang, J., Guodong, L.U.: Adaptive robust neural control of a two-manipulator system holding a rigid object with inaccurate base frame parameters. J. Zhejiang Univ. Sci. C 19(11), 1316–1327 (2018)

    Article  Google Scholar 

  2. Izadbakhsh, A., Khorashadizadeh, S.: Robust adaptive control of robot manipulators using Bernstein polynomials as universal approximator. Int. J. Robust Nonlinear Control (2020). https://doi.org/10.1002/rnc.4913

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, S., Dai, S., Zanchettin, A.M., Villa, R.: Trajectory planning based on non-convex global optimization for serial manipulators. Appl. Math. Model. (2020). https://doi.org/10.1016/j.apm.2020.03.004

    Article  MathSciNet  MATH  Google Scholar 

  4. Jun, J., Padois, V., Benamar, F.: Stability-based planning and trajectory tracking of a mobile manipulator over uneven terrains. In: IEEE International Workshop on Advanced Robotics and its Social Impacts (2015). https://doi.org/10.1109/ARSO.2015.7428212

  5. Alvarezramirez, J., Cervantes, I., Kelly, R.: PID regulation of robot manipulators: stability and performance. Syst. Control Lett. 41(2), 73–83 (2000)

    Article  MathSciNet  Google Scholar 

  6. Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58(6), 2444–2453 (2011)

    Article  Google Scholar 

  7. Kali, Y., Saad, M., Benjelloun, K.: Control of robot manipulators using modified backstepping sliding mode. In: New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins (2019). https://doi.org/10.1007/978-981-13-2212-9_5

  8. Guang, L., Min, W.: Singular perturbation approach for control of hydraulically driven flexible manipulator. J. Central South Univ. Technol. 12(1), 238–242 (2005)

    MathSciNet  Google Scholar 

  9. Qiu, Z., Wang, B., Zhang, X., Han, J.: Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder. Mech. Syst. Sig. Process. 36(2), 290–316 (2013)

    Article  Google Scholar 

  10. Parlaktuna, O., Ozkan, M.: Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robot. Auton. Syst. 46(3), 185–193 (2004)

    Article  Google Scholar 

  11. Jiang, P., Woo, P., Unbehauen, R.: Iterative learning control for manipulator trajectory tracking without any control singularity. Robotica 20(2), 149–158 (2002)

    Article  Google Scholar 

  12. Jia, B., Liu, S., Liu, Y.: Visual trajectory tracking of industrial manipulator with iterative learning control. Ind. Robot Int. J. 42(1), 54–63 (2015)

    Article  Google Scholar 

  13. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  14. Kanellakopoulos, I., Kokotovic, P.V., Morse, A.S.: Systematic design of adaptive controllers for feedback linearizable systems. In: American Control Conference (1991). https://doi.org/10.1109/9.100933

  15. Melhem, K., Wang, W.: Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix. IEEE Trans. Robot. 25(2), 428–437 (2009)

    Article  Google Scholar 

  16. Liu, B., Hong, J., Wang, L.: Linear inverted pendulum control based on improved ADRC. Syst. Sci. Control Eng. 7(3), 1–12 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Yan, J., Cao, T., Liu, N. (2021). Manipulator Control Law Design Based on Backstepping and ADRC Methods. In: Jia, Y., Zhang, W., Fu, Y. (eds) Proceedings of 2020 Chinese Intelligent Systems Conference. CISC 2020. Lecture Notes in Electrical Engineering, vol 705. Springer, Singapore. https://doi.org/10.1007/978-981-15-8450-3_28

Download citation

Publish with us

Policies and ethics