Skip to main content

A Review of Robust Cost Functions for M-Estimation

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 654))

Abstract

Robust state estimation plays a key role in mobile robotic navigation, and the M-estimation technique can effectively handle outliers. In this paper, the commonly used robust cost functions for M-estimation are given, and their cost, influence, and weight functions are summarized and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barfoot TD (2017) State estimation for robotics. Cambridge University Press

    Google Scholar 

  2. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

    Google Scholar 

  3. Mur-Artal R, Montiel JMM, Tardos JD (2015) ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot 31(5):1147–1163

    Article  Google Scholar 

  4. Yurtsever E, Lambert J, Carballo A, Takeda K (2020) A survey of autonomous driving: common practices and emerging technologies. IEEE Access 8:58443–58469

    Article  Google Scholar 

  5. Qin T, Li P, Shen S (2018) VINS-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot 34(4):1004–1020

    Article  Google Scholar 

  6. Huang G (2019) Visual-inertial navigation: a concise review. In: Proceedings of international conference on robotics and automation (ICRA), Montreal, Canada, pp 1–16

    Google Scholar 

  7. Cadena C, Carlone L, Carrillo H et al (2016) Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans Robot 32(6):1309–1332

    Article  Google Scholar 

  8. Durrant-Whyte H, Bailey T (2006) Simultaneous localisation and mapping (SLAM): part I. IEEE Robot Autom Mag 13(2):99–110

    Article  Google Scholar 

  9. Bailey T, Durrant-Whyte H (2006) Simultaneous localisation and mapping (SLAM): part II. IEEE Robot Autom Mag 13(3):108–117

    Article  Google Scholar 

  10. Hartley R, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  11. Haomin L, Guofeng Z, Hujun B (2016) A survey of monocular simultaneous localization and mapping. J Comput Aided Design Comput Graph 28(6):855–868 in Chinese

    Google Scholar 

  12. Fuentes-Pacheco J, Ruiz-Ascencio J, Rendon-Mancha JM (2015) Visual simultaneous localization and mapping: a survey. Artif Intell Rev 43:55–81

    Article  Google Scholar 

  13. Gao X, Zhang T, Liu Y, Yan Q (2019) 14 Lectures on visual SLAM: from theory to practice, 2nd edn., Publishing House of Electronics Industry (in Chinese)

    Google Scholar 

  14. MacTavish K, Barfoot TD (2015) At all costs: a comparison of robust cost functions for camera correspondence outliers. In: Proceedings of 12th conference on computer and robot vision (CRV), Halifax, Canada, pp 62–69

    Google Scholar 

  15. Rey WJJ (1983) Introduction to robust and quasi-robust statistical methods. Springer, Berlin

    Google Scholar 

  16. Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York

    Book  Google Scholar 

  17. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  18. Zhang X, Zhang J, Rad AB, Mai X, Jin Y (2012) A novel mapping strategy based on neocortex model: Pre-liminary results by hierarchical temporal memory. In: Proceedings of IEEE international conference on robotics and biomimetics (ROBIO), Guangzhou, China, pp 476–481

    Google Scholar 

  19. Zhang Z (1997) Parameter estimation techniques: a tutorial with application to conic fitting. Image Vision Comput 15(1):59–76

    Article  Google Scholar 

  20. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer Science & Business Media, Berlin

    Google Scholar 

  21. Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Statistics Theory Methods 6(9):813–827

    Article  Google Scholar 

  22. Huber PJ et al (1964) Robust estimation of a location parameter. Ann Math Statistics 35(1):73–101

    Article  MathSciNet  Google Scholar 

  23. Huber PJ, Ronchetti EM (2009) Robust statistics, 2nd edn. Wiley, New York

    Book  Google Scholar 

  24. Hu G, Khosoussi, K, Huang S (2013) Towards a reliable SLAM back-end. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp 37–43

    Google Scholar 

  25. Lee GH, Fraundorfer F, Pollefeys M (2013) Robust pose-graph loop-closures with expectation-maximization. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Tokyo, Japan, pp 556–563

    Google Scholar 

  26. Geman S, McClure DE, Geman D (1992) A nonlinear filter for film restoration and other problems in image processing. CVGIP: Graph Models Image Process 54(4):281–289

    Google Scholar 

  27. Sunderhauf N, Protzel P (2012) Switchable constraints for robust pose graph SLAM. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Vilamoura, Portugal, pp 1879–1884

    Google Scholar 

  28. Agarwal P, Tipaldi GD, Spinello L, Stachniess C, Burgard W (2013) Robust map optimization using dynamic covariance scaling. In: IEEE international conference on robotics and automation (ICRA), Karlsruhe, Germany, pp 62–69

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Pre-Research Project of Space Science (No. XDA15014700), the National Natural Science Foundation of China (No. 61601328), the Scientific Research Plan Project of the Committee of Education in Tianjin (No. JW1708), and the Doctor Foundation of Tianjin Normal University (No. 52XB1417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. (2021). A Review of Robust Cost Functions for M-Estimation. In: Liang, Q., Wang, W., Liu, X., Na, Z., Li, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2020. Lecture Notes in Electrical Engineering, vol 654. Springer, Singapore. https://doi.org/10.1007/978-981-15-8411-4_99

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8411-4_99

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8410-7

  • Online ISBN: 978-981-15-8411-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics