Skip to main content

Fiber-Optical Gyroscopes

  • Chapter
  • First Online:
Optoelectronic Gyroscopes

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 11))

Abstract

A fiber-optic gyroscope (FOG) is an optical device for sensing the changes in orientation, and thereby performing the function of a mechanical gyroscope, and for its operation is based on the interference of light having passed through a coil of optical fiber of very large length ~5 km.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Donati, G. Giuliani, M. Sorel, Proposal of a new approach to the electrooptical gyroscope: the GaAlAs integrated ring laser. Alta Freq. Riv. Elettron. 9(6) (1997); also: Alta Freq. Riv. Elettron. 10(6), 45–8 (1998); Integrated semiconductor laser rotation sensors, Proc. Photonics West, (San Diego, 1999) Integrated Optics Devices III, SPIE 3620, 322–331

    Google Scholar 

  2. V. Lodi-Annovazzi, S. Merlo, Mechanical-thermal noise in micromachined gyros. Microel. J. 30, 1227–1230(1999); also: R. Voss, Proc SPIE 3224, 62–73

    Google Scholar 

  3. S. Merlo, M. Norgia, S. Donati, Fiber gyroscope principles (Handbook of Fibre Optic Sensing Technology. Wiley, London, 2000), pp. 1–23

    Google Scholar 

  4. X. Zhang, Y. Zhang, Y. Gai, Y. Wang, X. Liu, K. Wang, P. Yuan, Performance of a resonatot-based interferometric fiber-optic gyroscope under the square wave phase bias modulation. Opt. Eng. 53, 102711 (2014)

    Article  Google Scholar 

  5. M. Digonnet, S. Blin, H.K. Kim, V. Dangui, G. Kino, Sensitivity and stability of an air-core fibre-optic gyroscope. Meas. Sci. Technol. 18, 3089 (2007)

    Article  Google Scholar 

  6. R.J. Pérez, I. Álvarez, J.M. Enguita, Theoretical design of a depolarized interferometric fiber-optic gyroscope (IFOG) on SMF-28 single-mode standard optical fiber based on closed-loop sinusoidal phase modulation with serrodyne feedback phase modulation using simulation tools for tactical and industrial grade applications. Sensors 16(5), 604 (2016). https://doi.org/10.3390/s16050604

    Article  Google Scholar 

  7. B. Singh, H. Rana, S. Kumar, P. Bhulania, G. Minocha, A novel design of fiber optic gyroscope based INS system for U AS applications, in 3rd International Conference on Recent Trends in Computing 2015 (ICRTC- 2015), Procedia Comput. Sci. 57, 1317–1323, (2015)

    Google Scholar 

  8. Tino Eidam, Christian Wirth, Cesar Jauregui, Fabian Stutzki, Florian Jansen, Hans-Jürgen Otto, Oliver Schmidt, Thomas Schreiber, Jens Limpert, Andreas Tünnermann, Experimental observations of the threshold-like onset of mode instabilities in high-power fiber amplifiers. Opt. Express 19, 13218 (2011)

    Article  Google Scholar 

  9. J. Nayak, Fiber-optic gyroscopes: from design to production. Appl. Opt. 50(25), E152–E161 (2011)

    Article  Google Scholar 

  10. K.N. Chopra, Analytical treatment of the optimization and mathematical modeling of ring laser gyroscopes and a short qualitative review. Atti Fond G. Ronchi 70, 639–656 (2015)

    Google Scholar 

  11. C.P. Wyss, D.N. Wright, B.T. King, D.P. McLeod, S.J. Copper, G.E. Stedman, Collision broadening and quantum noise in a very large ring laser gyroscope. Opt. Commun. 174, 181–189 (2000)

    Article  Google Scholar 

  12. K.N. Chopra, Minimization of scattering loss of dielectric mirrors for ring laser gyroscope. Atti Fond G. Ronchi 70, 179–187 (2015)

    Google Scholar 

  13. H.-J. Cho, J.-C. Lee, S.-H. Lee, Design and development of an ultralow optical loss mirror coating for zerodur substrate. J. Opt Soc. Korea 16, 80–84 (2012)

    Article  Google Scholar 

  14. K.N. Chopra, Improvement in the laser induced damage threshold (LIDT) by the dual ion beam sputtering (DIBS) technology. Atti Fond G. Ronchi 70, 395–406 (2015)

    Google Scholar 

  15. C. Ciminelli, F. Dell’Olio, M.N. Armenise, F.M. Soares, W. Passenberg, High performance InP ring resonator for new generation monolithically integrated optical gyroscopes. Opt. Express 21, 556–564 (2013)

    Article  Google Scholar 

  16. T. Zhang, G. Qian, Y.Y. Wang, X.J. Xue, F. Shan, R.Z. Li, J.Y. Wu, X.Y. Zhang, Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator. Sci. Rep. 24(4), 3855 (2014)

    Google Scholar 

  17. G. Bolognini, C. Clivati, G. Costanzo, M. Frittelli, F. Levi, A. Mura, S. Schiller, D. Calonico, Giant-area fiber optic gyroscope with Raman-nased temperature sensing for metrological applications, in Proceedings of SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 915724 (2 June 2014). https://doi.org/10.1117/12.2059316

  18. B.Z. Steinberg, Rotating photonic crystals: a medium for compact optical gyroscopes. Phys. Rev. E 71, 056621 (2005)

    Article  Google Scholar 

  19. N. Song, P. Ma, J. Jin, J. Song, Reduced phase error of a fiber optic gyroscope using a polarization maintaining photonic crystal fiber. Opt. Fiber Technol. 18(4), 186–189 (2012)

    Article  Google Scholar 

  20. C.W. Yu, C.L. Chiu, T.T. Shih, J.J. Jou, A stable and compact optical module for fiber-optic gyroscope application. Fiber Integ. Opt. 33(4), 306–314 (2014)

    Article  Google Scholar 

  21. K.K. Annamdas, V.G. Annamdas, Review on developments in fiber optical sensors and applications. Int. J. Mater. Eng. 1, 1–16 (2011)

    Google Scholar 

  22. S. Poudyal, S. Srivastava, R. Gowrishankar, Self-beating resonant optical gyroscope with a “reflector”: the possibility of high sensitivities at reduced costs. Appl. Opt. 58(7), 1699–1706 (2019). osapublishing.org

    Article  Google Scholar 

  23. Z. Wang, Y. Yang, P. Lu, R. Luo, Y. Li, D. Zhao, Dual-polarization interferometric fiber-optic gyroscope with an ultra-simple configuration. Opt. Lett. 39(8), 2463–2466 (2014). osapublishing.org

    Article  Google Scholar 

  24. H.C. Lefèvre, Optical fiber technology, in The Fiber-Optic Gyroscope: Challenges to Become the Ultimate Rotation-Sensing Technology (Elsevier, 2013)

    Google Scholar 

  25. Z. Fan, G. Lu, S. Hu, Z. Wang, H. Luo, Scale factor characteristics of laser gyroscopes of different sizes. Rev. Sci. Instrum. 87, 045002 (2016). http://doi.org/10.1063/1.4945348, Published Online: 11 Apr 2016 Accepted Mar 2016

  26. S. Yao, S. Wey, W. Daab, Characterization of both the static and dynamic parameters of fiber coils ensures defect-free and consistent manufacturing for reliable fiber-optic gyroscope (FOG) devices. Fiber-Opt. Sens. Transf. FOG Coil Manuf. Art Sci. Laser Focus World (2017)

    Google Scholar 

  27. M. Skalský, Z. Havránek, J. Fialka, Efficient modulation and processing method for closed-loop fiber optic gyroscope with piezoelectric modulator. Sensors 19(7), 1710 (2019). https://doi.org/10.3390/s19071710

    Article  Google Scholar 

  28. Special Issue, Recent Advances in Integrated Microphotonic and Fiber-Optic Gyroscopes”, A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section “Optical Sensors”. Recent Advances in Integrated Microphotonic and Fiber-Optic Gyroscopes

    Google Scholar 

  29. A.D. Di Virgilio, N. Beverini, G. Carelli, D. Ciampini, F. Fuso, E. Maccioni, Analysis of ring laser gyroscopes including laser dynamics. Special Article—Tools Exper. Theo. Euro. Phy. J. C 79, 573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Nain Chopra .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chopra, K.N. (2021). Fiber-Optical Gyroscopes. In: Optoelectronic Gyroscopes. Progress in Optical Science and Photonics, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-15-8380-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8380-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8379-7

  • Online ISBN: 978-981-15-8380-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics