Skip to main content

Indian Discovery Effort in the Quest of Novel Antibiotics

  • Chapter
  • First Online:
Drug Discovery and Drug Development

Abstract

Riding on the strength of chemistry in ‘reverse engineering’, India has evolved as a major global supplier of API and finished dosage. Post TRIPS agreement, Indian research entities took up the challenge of innovation and ventured into the high-risk and resource-intensive area of new drug discovery. In the backdrop of ever rising antibacterial resistance and unfortunate exodus of big pharma companies from antibacterial discovery, Indian pharma as well government research organizations embarked on the tumultuous journey of novel antibiotic discovery. This chapter describes the discovery approaches taken by Hindustan Antibiotics Limited, Hoechst India, Ranbaxy Labs, Orchid Pharma, Dr. Reddy’s Lab, Bug Works, and Wockhardt. The authors highlight indispensable organizational and strategic elements for a meaningful discovery program. Finally, discovery approaches leading to Hoechst India’s novel class antibiotic mersacidin and phase 3 clinical stage/regulatory approval of Orchid’s OCID 5090, and Wockhardt’s levonadifloxacin, alalevonadifloxacin, nafithromycin, and zidebactam are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaramadaka SKR, Guha MK, Prabhu G, Kini SG, Vijayan M (2007) Synthesis and evaluation of urea and thiourea derivatives of oxazolidinones as antibacterial agents. Chem Pharm Bull 55(2):236–240. https://doi.org/10.1248/cpb.55.236

    Article  CAS  Google Scholar 

  • Al-Lahham A, De Souza NJ, Patel M, Rene Reinert R (2005) Activity of the new quinolones WCK 771, WCK 1152 and WCK 1153 against clinical isolates of Streptococcus pneumoniae and Streptococcus pyogenes. J Antimicrob Chemother 56(6):1130–1133. https://doi.org/10.1093/jac/dki361

    Article  CAS  PubMed  Google Scholar 

  • Almarzoky Abuhussain SS, Avery LM, Abdelraouf K, Nicolau DP (2019) In vivo efficacy of humanized WCK 5222 (Cefepime-Zidebactam) exposures against carbapenem-resistant Acinetobacter baumannii in the neutropenic thigh model. Antimicrob Agents Chemother 63(1):e01931. https://doi.org/10.1128/AAC.01931-18

    Article  PubMed  Google Scholar 

  • API Synthesis International (2016) ACS Symposium. Recent Advances in Drug Development, 11–12 November 2016, Hyderabad, India. http://apisynthesisint.blogspot.com/

  • Appalaraju B, Baveja S, Baliga S, Shenoy S, Bhardwaj R, Kongre V, Dattatraya GS, Dhole T, Verma B, Mukherjee DN, Gupta S, Shanmugam P, Iravane J, Mishra SR, Barman P, Chopra S, Hariharan M, Surpam R, Pratap R, Joshi P, Khande H, Mane A, Jain R, Bhagwat S (2020) In vitro activity of a novel antibacterial agent, levonadifloxacin, against clinical isolates collected in a prospective, multicentre surveillance study in India during 2016-18. J Antimicrob Chemother 75(3):600–608. https://doi.org/10.1093/jac/dkz493

    Article  CAS  PubMed  Google Scholar 

  • Avery LM, Abdelraouf K, Nicolau DP (2018) Assessment of the in vivo efficacy of WCK 5222 (Cefepime-Zidebactam) against carbapenem-resistant Acinetobacter baumannii in the neutropenic murine lung infection model. Antimicrob Agents Chemother 62(11):e00948. https://doi.org/10.1128/AAC.00948-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Avery LM, Mullane EM, Nicolau DP (2020) Evaluation of the in vitro activity of WCK 5222 (cefepime/zidebactam) and currently available combination therapies against single- and double-carbapenemase producing Enterobacteriaceae: expanding the zone of hope. Int J Antimicrob Agents 55(2):105863. https://doi.org/10.1016/j.ijantimicag.2019.105863

    Article  CAS  PubMed  Google Scholar 

  • Bader JC (2016) Pharmacokinetic-pharmacodynamic target attainment analyses to support nafithromycin (WCK 4873) dose selection for the treatment of community-acquired bacterial pneumonia. Paper presented at the ASM Microbe, Boston, USA

    Google Scholar 

  • Balasubramanian G (2017) Carbapenem compounds. WIPO (PCT) Patent WO2017158616A1

    Google Scholar 

  • Barman TK, Kumar M, Mathur T, Chaira T, Ramkumar G, Kalia V, Rao M, Pandya M, Yadav AS, Das B, Upadhyay DJ, Hamidullah KR, Raj VS, Singh H (2016) In vitro and in vivo activities of a bi-aryl oxazolidinone, RBx 11760, against gram-positive bacteria. Antimicrob Agents Chemother 60(12):7134–7145. https://doi.org/10.1128/AAC.00453-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagwat S (2012) 1,6- diazabicyclo [3,2,1] octan- 7 - one derivatives and their use in the treatment of bacterial infections. WIPO (PCT) Patent WO2013030735A1

    Google Scholar 

  • Bhagwat SS, Periasamy H, Takalkar SS, Chavan R, Tayde P, Kulkarni A, Satav J, Zope V, Patel M (2019a) In vivo pharmacokinetic/pharmacodynamic targets of levonadifloxacin against staphylococcus aureus in a neutropenic murine lung infection model. Antimicrob Agents Chemother 63(8):e00909. https://doi.org/10.1128/AAC.00909-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagwat SS, Nandanwar M, Kansagara A, Patel A, Takalkar S, Chavan R, Periasamy H, Yeole R, Deshpande PK, Bhavsar S, Bhatia A, Ahdal J, Jain R, Patel M (2019b) Levonadifloxacin, a novel broad-spectrum anti-MRSA benzoquinolizine quinolone agent: review of current evidence. Drug Des Devel Ther 13:4351–4365. https://doi.org/10.2147/DDDT.S229882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagwat SS, Periasamy H, Takalkar SS, Palwe SR, Khande HN, Patel MV (2019c) The novel beta-lactam enhancer zidebactam augments the in vivo pharmacodynamic activity of cefepime in a neutropenic mouse lung acinetobacter baumannii infection model. Antimicrob Agents Chemother 63(4):e02146. https://doi.org/10.1128/AAC.02146-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Chatterjee DK, Jani RH, Blumbach J, Ganguli BN, Klesel N, Limbert M, Seibert G (1992) Mersacidin, a new antibiotic from Bacillus. In vitro and in vivo antibacterial activity. J Antibiot (Tokyo) 45(6):839–845. https://doi.org/10.7164/antibiotics.45.839

    Article  CAS  Google Scholar 

  • Chatterjee S, Nadkarni SR, Vijayakumar EK, Patel MV, Ganguli BN, Fehlhaber HW, Vertesy L (1994) Napsamycins, new Pseudomonas active antibiotics of the mureidomycin family from Streptomyces sp. HIL Y-82,11372. J Antibiot (Tokyo) 47(5):595–598. https://doi.org/10.7164/antibiotics.47.595

    Article  CAS  Google Scholar 

  • Das B, Rudra S, Yadav A, Ray A, Rao AV, Srinivas AS, Soni A, Saini S, Shukla S, Pandya M, Bhateja P, Malhotra S, Mathur T, Arora SK, Rattan A, Mehta A (2005) Synthesis and SAR of novel oxazolidinones: discovery of ranbezolid. Bioorg Med Chem Lett 15(19):4261–4267. https://doi.org/10.1016/j.bmcl.2005.06.063

    Article  CAS  PubMed  Google Scholar 

  • Deshpande PK, Tadiparthi R, Bhawsar SB, Patil VJ, Gupta SV, Pawar SS, Pavase LS, Kale RP, Deshmukh VV, Dhabade SK, Dekhane DV, Shaikh MU, Yeole RD, Patil KR, Rane VP, Trivedi BK (2016a) WCK 4873 (INN: Nafithromycin): structure activity relationship (SAR) identifying a lactone ketolide with activity against Telithromycin-resistant (Tel-R) Pneumococci (SPN) and S. pyogenes (SPY). Paper presented at the ASM MICROBE, Boston, USA

    Google Scholar 

  • Deshpande P, Bhavsar S, Joshi S, Pawar S, Kale R, Mishra A, Jadhav S, Pavase L, Gupta S, Yeole R, Rane V, Ahirrao V, Bhagwat S, Patel MV (2016b) WCK 5107 (Zidebactam, ZID): structure activity relationship (SAR) of Novel Bicyclo acyl Hydrazide (BCH) pharmacophore active against gram-negatives including Pseudomonas (PA). Paper presented at the ASM MICROBE, Boston, USA

    Google Scholar 

  • Flamm RK, Rhomberg PR, Sader HS (2017) In vitro activity of the novel lactone ketolide nafithromycin (WCK 4873) against contemporary clinical bacteria from a global surveillance program. Antimicrob Agents Chemother 61(12):e01230–e01217. https://doi.org/10.1128/AAC.01230-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadekar PK, Roychowdhury A, Kharkar PS, Khedkar VM, Arkile M, Manek H, Sarkar D, Sharma R, Vijayakumar V, Sarveswari S (2016) Design, synthesis and biological evaluation of novel azaspiro analogs of linezolid as antibacterial and antitubercular agents. Eur J Med Chem 122:475–487. https://doi.org/10.1016/j.ejmech.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Sinha M, Bhattacharyya A, Sadhasivam S, Megha J, Reddy S, Saini S, Singh H, Kumar D, Kaur SP, Mishra M, Usharani D, Ghosh S, Sengupta S (2018) A rationally designed multifunctional antibiotic for the treatment of drug-resistant acne. J Invest Dermatol 138(6):1400–1408. https://doi.org/10.1016/j.jid.2017.11.041

    Article  CAS  PubMed  Google Scholar 

  • Hameed PS, Sharma S, Katagihallimath N, Jayaraman R, Balasubramanian V (2018a) A broad spectrum novel bacterial topoisomerase inhibitor (NBTI): killing kinetics, ADME and in vivo efficacy. Paper presented at the ASM Microbe Atlanta, 7–11 June 2018

    Google Scholar 

  • Hameed PS, Bharatham N, Katagihallimath N, Sharma S, Nandishaiah R, Shanbhag AP, Thomas T, Narjari R, Sarma M, Bhowmik P, Amar P, Ravishankar R, Jayaraman R, Muthan K, Subbiah R, Ramachandran V, Balasubramanian V, Datta S (2018b) Nitrothiophene carboxamides, a novel narrow spectrum antibacterial series: mechanism of action and efficacy. Sci Rep 8(1):7263. https://doi.org/10.1038/s41598-018-25407-7

    Article  CAS  Google Scholar 

  • Jain R (2008) Novel antimicrobials. WIPO (PCT) Patent WO2008090570A1

    Google Scholar 

  • Khodade VS, Sharath Chandra M, Banerjee A, Lahiri S, Pulipeta M, Rangarajan R, Chakrapani H (2014) Bioreductively activated reactive oxygen species (ROS) generators as MRSA inhibitors. ACS Med Chem Lett 5(7):777–781. https://doi.org/10.1021/ml5001118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd JM, Abdelraouf K, Nicolau DP (2020) Efficacy of human-simulated bronchopulmonary exposures of cefepime, zidebactam and the combination (WCK 5222) against MDR Pseudomonas aeruginosa in a neutropenic murine pneumonia model. J Antimicrob Chemother 75(1):149–155. https://doi.org/10.1093/jac/dkz414

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Mathur T, Barman TK, Ramkumar G, Bhati A, Shukla G, Kalia V, Pandya M, Raj VS, Upadhyay DJ, Vaishnavi C, Chakrabarti A, Das B, Bhatnagar PK (2012) In vitro and in vivo activities of the novel Ketolide RBx 14255 against Clostridium difficile. Antimicrob Agents Chemother 56(11):5986–5989. https://doi.org/10.1128/AAC.00015-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepak AJ, Zhao M, Andes DR (2019) WCK 5222 (Cefepime/Zidebactam) pharmacodynamic target analysis against metallo-beta-lactamase producing enterobacteriaceae in the neutropenic mouse pneumonia model. Antimicrob Agents Chemother 63:e01648. https://doi.org/10.1128/AAC.01648-19

    Article  CAS  PubMed Central  Google Scholar 

  • Livermore DM, Mushtaq S, Warner M, Vickers A, Woodford N (2017) In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J Antimicrob Chemother 72(5):1373–1385. https://doi.org/10.1093/jac/dkw593

    Article  CAS  PubMed  Google Scholar 

  • Lohray BB, Lohray VB, Srivastava BK, Kapadnis PB, Pandya P (2004a) Novel tetrahydro-thieno pyridyl oxazolidinone: an antibacterial agent. Bioorg Med Chem 12(17):4557–4564. https://doi.org/10.1016/j.bmc.2004.07.019

    Article  CAS  PubMed  Google Scholar 

  • Lohray BB, Lohray VB, Srivastava BK, Gupta S, Solanki M, Kapadnis P, Takale V, Pandya P (2004b) Oxazolidinone: search for highly potent antibacterial. Bioorg Med Chem Lett 14(12):3139–3142. https://doi.org/10.1016/j.bmcl.2004.04.024

    Article  CAS  PubMed  Google Scholar 

  • Mahajan GB (2009) Novel antibacterial compounds. Europe Patent EP2010202A2, 7 Jan 2009

    Google Scholar 

  • Mathur T, Kumar M, Barman TK, Kumar GR, Kalia V, Singhal S, Raj VS, Upadhyay DJ, Das B, Bhatnagar PK (2011) Activity of RBx 11760, a novel biaryl oxazolidinone, against Clostridium difficile. J Antimicrob Chemother 66(5):1087–1095. https://doi.org/10.1093/jac/dkr033

    Article  CAS  PubMed  Google Scholar 

  • Mehta A (2001) Oxazolidinone derivatives as antimicrobials disease. United States Patent US20020103186A1

    Google Scholar 

  • Michael D, Huband JML, Amy A, Watters HK, Becker VR, Balasubramanian V, Flamm RK (2019) In vitro activity of BWC0977 (a novel bacterial topoisomerase inhibitor) and comparators against recent clinical and molecularly characterized enterobacteriaceae and non-fermenter isolates from the United States and Europe. Paper presented at the ECCMID, Amsterdam, 13–16 April 2019

    Google Scholar 

  • Monogue ML, Tabor-Rennie J, Abdelraouf K, Nicolau DP (2019) In vivo efficacy of WCK 5222 (Cefepime-Zidebactam) against multidrug-resistant Pseudomonas aeruginosa in the neutropenic murine thigh infection model. Antimicrob Agents Chemother 63(7):e00233. https://doi.org/10.1128/AAC.00233-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moya B, Barcelo IM, Cabot G, Torrens G, Palwe S, Joshi P, Umarkar K, Takalkar S, Periasamy H, Bhagwat S, Patel M, Bou G, Oliver A (2019) In vitro and in vivo activities of beta-lactams in combination with the novel beta-lactam enhancers zidebactam and WCK 5153 against multidrug-resistant metallo-beta-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 63(5):e00128. https://doi.org/10.1128/AAC.00128-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullane EM, Avery LM, Nicolau DP (2019) Comparative evaluation of the in vitro activities of WCK 5222 (cefepime/zidebactam) and combination antibiotic therapies against carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 64:e01669. https://doi.org/10.1128/AAC.01669-19

    Article  Google Scholar 

  • Nadkarni SR, Patel MV, Chatterjee S, Vijayakumar EK, Desikan KR, Blumbach J, Ganguli BN, Limbert M (1994) Balhimycin, a new glycopeptide antibiotic produced by Amycolatopsis sp. Y-86,21022. Taxonomy, production, isolation and biological activity. J Antibiot (Tokyo) 47(3):334–341. https://doi.org/10.7164/antibiotics.47.334

    Article  CAS  Google Scholar 

  • Palanisamy SU (2010) 2-substituted methyl penam derivatives. United States Patent US7687488B2

    Google Scholar 

  • Palanisamy SU (2014) Compounds and their use. United States Patent US20140057888A1, 27 Feb 2014

    Google Scholar 

  • Patel MV (2007) Prodrugs of benzoquinolizine-2-carboxylic acid. WIPO (PCT) Patent WO2007102061A2

    Google Scholar 

  • Patil VJ (2014) Nitrogen containing compounds and their use. United States Patent US 2014/0296526

    Google Scholar 

  • PatilS VJ (2007) Substituted piperidinophenyl oxazolidinones. United States Patent US8288416B2

    Google Scholar 

  • Paul-Satyaseela M, Solanki SS, Sathishkumar D, Bharani T, Magesh V, Rajagopal S (2009) In vitro antibacterial activities of a novel oxazolidinone, OCID0050. J Antimicrob Chemother 64(4):797–800. https://doi.org/10.1093/jac/dkp300

    Article  CAS  PubMed  Google Scholar 

  • Paul-Satyaseela M, Koppolu K, Senthilkumar UP, Shapiro S (2014) Efficacy of the extended spectrum β-lactamase inhibitor, AAI101, combined with β-lactams in murine models of systemic Gram-negative infection. Paper presented at the 2014 ICAAC, Washington, USA

    Google Scholar 

  • Preston RA, Mamikonyan G, DeGraff S, Chiou J, Kemper CJ, Xu A, Mastim M, Yeole R, Chavan R, Patel A, Friedland HD, Bhatia A (2019) Single-center evaluation of the pharmacokinetics of WCK 5222 (Cefepime-Zidebactam combination) in subjects with renal impairment. Antimicrob Agents Chemother 63(1):e01484. https://doi.org/10.1128/AAC.01484-18

    Article  CAS  PubMed  Google Scholar 

  • Rangarajan R (2012) Heterocyclic compounds as inhibitors of fatty acid biosysnthesis for bacterial infections. United States Patent US 9115149 B2

    Google Scholar 

  • Rodvold KA, Gotfried MH, Chugh R, Gupta M, Friedland HD, Bhatia A (2017) Comparison of plasma and intrapulmonary concentrations of nafithromycin (WCK 4873) in healthy adult subjects. Antimicrob Agents Chemother 61(9):e01096–e01017. https://doi.org/10.1128/aac.01096-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sader HS, Castanheira M, Huband M, Jones RN, Flamm RK (2017a) WCK 5222 (Cefepime-Zidebactam) antimicrobial activity against clinical isolates of gram-negative bacteria collected worldwide in 2015. Antimicrob Agents Chemother 61(5):e00072. https://doi.org/10.1128/AAC.00072-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sader HS, Rhomberg PR, Flamm RK, Jones RN, Castanheira M (2017b) WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant beta-lactamases. J Antimicrob Chemother 72(6):1696–1703. https://doi.org/10.1093/jac/dkx050

    Article  CAS  PubMed  Google Scholar 

  • Sanchez ML, Wenzel RP, Jones RN (1992) In vitro activity of decaplanin (M86-1410), a new glycopeptide antibiotic. Antimicrob Agents Chemother 36(4):873–875. https://doi.org/10.1128/aac.36.4.873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sashidhara KV, Rao KB, Kushwaha P, Modukuri RK, Singh P, Soni I, Shukla PK, Chopra S, Pasupuleti M (2015) Novel chalcone-thiazole hybrids as potent inhibitors of drug resistant Staphylococcus aureus. ACS Med Chem Lett 6(7):809–813. https://doi.org/10.1021/acsmedchemlett.5b00169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza NJ, Gupte SV, Deshpande PK, Desai VN, Bhawsar SB, Yeole RD, Shukla MC, Strahilevitz J, Hooper DC, Bozdogan B, Appelbaum PC, Jacobs MR, Shetty N, Patel MV, Jha R, Khorakiwala HF (2005) A chiral benzoquinolizine-2-carboxylic acid arginine salt active against vancomycin-resistant Staphylococcus aureus. J Med Chem 48(16):5232–5242. https://doi.org/10.1021/jm050035f

    Article  CAS  PubMed  Google Scholar 

  • Sreenivas K, Amarnath PV, Mallik A, Sarnaik H, Kumar NS, Takhi M, Trehan S, Kumar MS, Iqbal J, Rajagopalan R, Chakrabarti R (2007) In vitro and in vivo antibacterial evaluation of DRF 8417, a new oxazolidinone. J Antimicrob Chemother 60(1):159–161. https://doi.org/10.1093/jac/dkm116

    Article  CAS  PubMed  Google Scholar 

  • Takalkar SS (2016) WCK 4873 (Nafithromycin): PK/PD analysis against S. pneumoniae (SPN) including telithromycin-non-susceptible (TEL-NS) strains through murine-lung infection model. Paper presented at the ASM Microbe, Boston, USA

    Google Scholar 

  • Takhi M (2015) Substituted pyridine derivatives as FabI inhibitors. United States Patent US9062002B2

    Google Scholar 

  • Takhi M, Sreenivas K, Reddy CK, Munikumar M, Praveena K, Sudheer P, Rao BNVM, Ramakanth G, Sivaranjani J, Mulik S, Reddy YR, Narasimha Rao K, Pallavi R, Lakshminarasimhan A, Panigrahi SK, Antony T, Abdullah I, Lee YK, Ramachandra M, Yusof R, Rahman NA, Subramanya H (2014) Discovery of azetidine based ene-amides as potent bacterial enoyl ACP reductase (FabI) inhibitors. Eur J Med Chem 84:382–394. https://doi.org/10.1016/j.ejmech.2014.07.036

    Article  CAS  PubMed  Google Scholar 

  • Tellis M, Joseph J, Khande H, Bhagwat S, Patel M (2019) In vitro bactericidal activity of levonadifloxacin (WCK 771) against methicillin- and quinolone-resistant Staphylococcus aureus biofilms. J Med Microbiol 68(8):1129–1136. https://doi.org/10.1099/jmm.0.000999

    Article  CAS  PubMed  Google Scholar 

  • Thirumalachar MJ (1966) Process of producing hamycin antibiotic and product produced. United States Patent US3261751A

    Google Scholar 

  • Yadav N, Khanam T, Shukla A, Rai N, Hajela K, Ramachandran R (2015) Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I. Org Biomol Chem 13(19):5475–5487. https://doi.org/10.1039/c5ob00439j

    Article  CAS  PubMed  Google Scholar 

  • Yamada H (1995) Oxazolidinone derivatives and pharmaceutical compositions containing them. WIPO (PCT) Patent WO1995025106A1

    Google Scholar 

Download references

Acknowledgements

Authors sincerely thank Dr. Habil Khorakiwala, who graciously permitted inclusion of finer aspects of Wockhardt’s drug discovery approach that might be of wider interest to the community of discovery scientists in India and elsewhere. We would also like to thank Dr. Vijay Patil, and Dr. Satish Bhavsar, who helped in preparing certain sections and chemical structures of novel antibacterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh V. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, M.V., Bhagwat, S.S., Deshpande, P.K. (2021). Indian Discovery Effort in the Quest of Novel Antibiotics. In: Dikshit, M. (eds) Drug Discovery and Drug Development. Springer, Singapore. https://doi.org/10.1007/978-981-15-8002-4_3

Download citation

Publish with us

Policies and ethics